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1.0 INTRODUCTION 

This research report documents the implementation of a nonmotorized traffic counts program in 

Bend, Oregon as a part of a partnership between Oregon Department of Transportation and Bend 

Metropolitan Planning Organization.  ODOT’s research staff partnered with Bend MPO staff to 

devise data collection protocols for nonmotorized traffic data collection followed by three years 

of data collection.  In addition to collected traffic counts data, this research developed a high 

quality fully attributed bicycle network dataset used for determine count locations but more 

importantly used in data fusion modeling and crash analysis.   

The relevant content of the report is broken into 11 chapters covering every element of the work 

performed in this research.  Chapters 2 through 4 cover core components of the data collection 

and processing phase of the research.  Chapters through 5 through 8 document daily traffic count 

imputation methods and data fusion techniques developed for this research.  Finally, chapters 9 

through 13 report on the crash analysis using the counts based travel activity estimation.   

This work will ideally paint a complete picture for why nonmotorized traffic count and network 

data are important data elements for public agencies to collect as they can be used to highlight 

the disparate risk faced by nonmotorized users of the transportation system.  Raw frequencies of 

nonmotorized crash injuries tell only a small part of the story and only when these injuries are 

normalized using estimated exposure measures is the true state of the nonmotorized system 

revealed.  When the crash injury risk for nonmotorized users are orders of magnitude higher than 

motorized traffic public agencies will continue to convince more than the most dedicated or 

vulnerable people to use the transportation system.  The reality of the disparate risk makes 

meeting safety, air quality, livability, and climate goals unlikely and should be a key component 

of communication strategies for why projects to improve safety for nonmotorists are so 

important.   

1.1 DATA COLLECTION AND PROCESSING INTRODCUTION 

Chapters report 2 through 7 document the following tasks of the SPR 813 adopted work plan 

including: 

 Task 1: Data Collection Strategy 

 Task 2: Data Collection and Compilation 

 Task 3: Data Processing 

These tasks have been completed though data collection is ongoing and will continue after the 

completion of this research project by local agency staff.  These tasks are fundamental building 

blocks for the latter analysis tasks but should be helpful on their own for practitioners looking for 

guidance on these elements of nonmotorized data collection programs. 
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This research project is being executed in conjunction with agency staff from the Bend 

Metropolitan Planning Organization (MPO) and has relied on those staff and their contractor for 

much of the data development and collection.  This arrangement represents a novel approach to 

conducting a project for the ODOT Research Program.  Benefits from this arrangement include 

additional funding and staff resource from the Bend MPO for elements of the project which 

allow the ODOT research funded effort to do more work with less direct funding. A second 

major benefit of this arrangement is having a clear line to implementation since the Bend MPO is 

currently working on major planning efforts including a Transportation System Plan and a 

Transportation Safety Action Plan.  This uncommon arrangement is not without its limitations 

however since Bend MPO began some of the associated work before the beginning of this 

research project some efforts are underway and so the research project has less ability to make 

changes.  These limitations are not deal breakers however and the current state of the project is 

yielding significant benefits for advancing nonmotorized count programs and related analyses in 

the state of Oregon 

The Oregon Department of Transportation’s recently released Bicycle and Pedestrian Mode Plan 

recognized the lack of data in non-motorized transportation planning. Recent bicycle and 

pedestrian safety research completed by ODOT’s Research Section found it difficult to interpret 

final results for many elements of their efforts due to a lack of traffic counts for these modes. 

The recently published report SPR 778 Safety Effectiveness of Pedestrian Crossing 

Enhancements found that “the estimation of the safety effectiveness of pedestrian treatments was 

challenging due to… the general lack of reliable pedestrian counts”. Another recently published 

ODOT Research Report SPR 779 Risk Factors for Pedestrian and Bicycle Crashes concluded 

that, “The identification of risk factors and the magnitude of their influence on the likelihood of 

future crashes were significantly constrained by limited roadway information.  

1.2 STUDY AREA DETAILS 

The Bend MPO is located near the center of the state and comprises a population of roughly 

94,500 people as of 2017 according to U.S. Census figures.  The MPO area is bisected by two 

main highways, highway 97 and highway 20 which are access controlled in many places.  The 

region has 50.5 miles of off-street bicycle and pedestrian path as well as over 120 miles of on-

street bike lanes.  Figure 1.1 below shows the Federal Urbanized Boundary (FAUB) which 

coincides with the MPO boundary and constitutes this research projects study area.  The map 

also shows the location of bicycle facilities across the transportation network. Table 1.1 below 

summarizes the number of miles of bicycle facilities by federal functional classification.   

Table 1.1: Summary of Study Area Travel Network  

Functional Classification No Bicycle Facility Bike Lane Off-street path Total 

Local 463.1 3.4 50.5 517 

Minor Collector 2.8 1.1 - 3.9 

Major Collector 17.8 31.2 - 49 

Minor Arterial 5.8 54.9 - 60.7 

Other Principle Arterial 4.2 38.3 - 42.5 

Total  493.7 128.9 50.5 673.1 
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Figure 1.1: Study area boundary with bicycle facilities 

The city and MPO are currently going through a Transportation System Plan (TSP) update with 

some focus developing a project list of bicycle and pedestrian improvements.  The aim of these 

planning efforts is in part to increase the number of people who walk and bicycle for travel 

purposes.  In order to achieve those goals additional information on nonmotorized travel 

behavior is needed for the area.   

1.3 RESEARCH OBJECTIVES 

This research seeks to fill gaps in key measures of performance for walking and bicycling by 

furthering methods for estimating total activity for these modes using traffic counts. These 

measures of activity can fill basic metrics of performance across the system and help monitor 

changes over time including those occurring in response to system upgrades.  

In addition to fundamental measures of travel activity for people who walk and bicycle, this 

research would seek to analyze safety outcomes for these modes by utilizing the activity 

measures in crash rate development. Crash rates allow engineers, planners and other practioners 

better metrics for understanding facilities and street configurations with higher risk, and help 

deliver a key performance measure of safety outcomes.   
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2.0 DATA COLLECTION STRATEGY 

This section describes the data collection strategy employed by this research effort and executed 

in conjunction with Bend MPO staff and the ongoing data collection program housed with that 

agency.  Since the Bend MPO staff had begun data collection before the start of this research 

project it was necessary to adapt the data collection strategy to some of the work already 

underway.  Some of the initial data collection elements including equipment purchases were 

funded in part by Oregon Department of Transportation grants through the Transportation 

Records Coordinating Committee (TRCC).  Overall, this collection of efforts represents a novel 

partnership between the state DOT and MPO in Oregon and can serve as a model for initiating 

future non-motorized traffic count programs.   

2.1 EXISTING AND FUTURE BEND MPO COUNT PROGRAM GOALS 

AND PRIORITIES 

2.1.1 Existing Count Program Priorities 

A plan was developed and adopted before the start of this research effort and guided the 

formation of the traffic count program including where data would be collected (KA 2016).  

Before the start of this count program no systemic nonmotorized traffic data collection was being 

performed though vehicle counts are collected for Highway Performance Monitoring System 

(HPMS) purposes by ODOT.  This Bend MPO traffic count plan lays out five key needs the data 

collection plan would satisfy including: 

 Monitor use and trends 

 Measure project success 

 Plan for the future 

 Prioritize maintenance activities and operations 

 Improve safety analysis.  

With these uses in mind the locations selected for data collection included streets that existed at 

traffic bottlenecks like bridges and underpasses as well as locations with planned infrastructure 

improvements.   

2.1.2 Count Program Priorities Going Forward 

In addition to current priorities count data collection should help inform higher level analyses 

including modeling of total nonmotorized traffic activity.  A primary feature of this research will 

be to offer additional information on data collection strategies for that purpose.  Future steps in 

this research project will utilize nonmotorized counts in a direct demand model which seeks to 
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estimate total bicycle and pedestrian travel activity across the transportation network. The direct 

demand approach uses a statistical model where traffic counts are a function of a number of 

inputs including the type of roadway, the presence of a bicycle facility, and the accessibility to 

jobs and employment as well as some connectivity measures.   

The use of counts data for this purpose was not originally envisioned for the Bend MPO count 

program but can support it nonetheless.  Below is a map of the current distribution of traffic 

count locations and one measure of access to jobs.  The direct demand model will use the 

observed relationships at these sites and the underlying access measure to forecast travel activity 

to the rest of the street network where no counts have been collected.   

Future priorities for traffic count data collection would aim to collect enough count observations 

I where other attributes, like accessibility, vary to a degree that supports strong statistical 

strength. In estimated models.  For instance in the below figure, the counts seem reasonably 

distributed across the region where access to jobs varies, as opposed to the counts being 

concentrated in the high access core of the downtown.  This should help make the direct demand 

models more reliable.  In future interim reports the direct demand model method will be 

discussed at length with a lengthy examination of past approaches, including one analysis 

completed by the ODOT Research Program where the method was applied in the Central Lane 

MPO (ODOT 2018). 

 

Figure 1.1: Access to jobs and nonmotorized count locations
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3.0 DATA COLLECTION AND COMPILATION 

This section describes the equipment, procedures, and data processing protocols established in 

the Bend MPO for collecting and storing traffic counts.  The count program uses a combination 

of permanent and mobile counts that utilize various technologies including inductive loops, 

infrared, tubes, and pressure sensors.  Paid contract staff are utilized to collect data using mobile 

counting equipment and a procedure was constructed that uses a cloud based spreadsheet to 

record the deployment and pick up dates and times for each device deployed.  Traffic data is sent 

via cell phone connection from the counting device to a cloud based data repository and later 

combined with deployment information to process the data and combine with spatial attributes 

for a final usable format.  This process was designed to reduce the potential for human error and 

also reduces data handling which should save staff time and associated costs.   

3.1 NONMOTORIZED TRAFFIC COUNTING EQUIPMENT 

This research and the developing data collection program utilize multiple types of data collection 

devices and are summarized below.  These devices collect vehicle, bicycle or pedestrian traffic 

though some collect both without distinguishing between the user types.  These counts are 

termed ‘users’ and denote the aggregation of both bicycle and pedestrian users for the purposes 

of this report.  The following describes the equipment used in the study area’s count program 

with deployment examples.  Additionally, discussion of the likely inaccuracy of the devices is 

presented along with the results of validation tests performed on some of the devices in the study 

area.  

3.1.1 Inductive Loop 

Inductive loops detectors use induced current detection system that detects when metal objects 

cross over the in-ground loop or wire permanently installed in the ground.  Bicycle traffic count 

data are recorded with these devices but does not have the capability of recording pedestrian 

traffic.  Inductive loop hardware made by Eco-Counter© have been found to be accurate with as 

little as 0.4% error when counting in off-street conditions (Munro 2015) and up to 5.0% 

(Norback 2011) in on-street conditions.  The inductive loop hardware for this research has all 

been manufactured by Eco Counter and is installed in both an off-street and on-street setting.  

When the loops are collecting in an on-street setting they have been placed in the bike lane to 

minimize issues where the loops count vehicles as bikes.  Figure 3.1 below shows an installation 

of an inductive loop detector in an off-street setting at Franklin Avenue where no vehicle traffic 

can access the loops while Figure 3.2 shows the installation of the inductive loops in a bike lane 

on Galveston Avenue.   
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Figure 3.1: Separated inductive loop detector at Franklin Avenue in Bend MPO 

 

Figure 3.2: On-street inductive loop detector at Galveston Ave. in Bend MPO 

In addition to counting bicycles, inductive loops that count vehicles are also present in the study 

region.   
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3.1.2 SLABs 

The SLAB detector uses pressure to detect the presence of both pedestrians and people riding 

bicycles and does not distinguish between users.  The picture below shows the installation of the 

SLAB system on Colorado Avenue in the study area. No published validation studies could be 

found for this device type but a short validation evaluation was performed and is described in 

Table 3.1 and were shown to be relatively accurate. 

 

Figure 3.3: SLAB detector at Colorado Avenue in Bend MPO 

3.1.3 Passive Infrared 

Passive infrared detector devices detect uses of a facility by measuring changes in ambient 

temperature of users compared to background radiation (heat) as the user moves through the 

detection zone.  This study includes data from two vendors of passive IR devices including 

TRAFX and Eco Counter.  The figure below shows a permanently installed IR Eco Counter 

device installed in the study area. 
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Figure 3.4: IR detector at Galveston Avenue in Bend MPO 

The TRAFX trail counter is used by the Bend Parks and Recreation Department to collect users 

on trails and off-street paths in parks within Bend.  The devices collect both pedestrians and 

bicycle users but does not distinguish between the two user types.  Similarly, the Eco Counter 

PYRO infrared device does not distinguish between bicycle and pedestrian users but does offer 

an integrated product that pairs with either an inductive loop for permanent count sites or 

pneumatic tubes for mobile counting devices.  Minnesota DOT (2015) performed validation 

evaluations of Eco Counters integrated bicycle and pedestrian counting devices and found the IR 

component was within 10% of the observed counts.  The difference in this evaluation was an 

under count most likely due to the inability of the device to detect all pedestrians in a group, 

referred to as occlusion.  The MnDOT report recommends developing correction factors.  

NCHRP Project 797 (Ryus, et al, 2014) tested two brands of passive IR sensors finding that the 

accuracy was ranges -3.1% and -16.7% for each product though did not describe which products 

were tested.  Validation tests for the study area equipment are presented below and compare well 

with previous results. 

3.1.4 Pneumatic tubes 

Pneumatic tube counters detect bicycles using sensors that measure the pressure change in the 

tubes by an instrument in the recording device.  These device types have been in practice for 

many decades for vehicle counting and are now being deployed for bicycle counting.  This 

research relies on Eco Counter’s pneumatic tube counters for all of the mobile site data 

collection.  The Eco Counter pneumatic tube was tested by MNDOT and found to have error of 

1.6% in an off-street setting (MNDOT 2015).  Oregon Department of Transportation (ODOT) 

tested the Eco Counter tube counter using both bicycle only tubes and standard roadway tubes 
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finding the devise counted bicycle traffic with a reported 1.7% mean absolute percent error 

(MAPE).   

Eco Counter also produces a product that combines the pneumatic tube device with an IR device 

in order to count both bicycle and pedestrian traffic.  The hardware does the subtraction of 

bicycle users from the total user counts in order to calculate the pedestrian traffic at the location.  

These Eco Counter Multi units are also deployed in the study area and shown in the figure 

below.   

 

Figure 3.5: IR and pneumatic detector combo device at Greenwood undercrossing in Bend 

MPO 

3.1.5 Summary of Device Types and Deployment Locations 

The map below shows the spatial distribution of the count locations and also details the device 

types and collection method with details views of the downtown and south east sections of town.   
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Figure 3.6: Count locations by device type and collection type 

Table 3.1 below summarizes the number of locations by device type, collection type, user type 

and whether the traffic data is collected from a permanent count location or from a mobile device 

that can be moved to alternative locations.  This table shows there are five types of devices being 

used including the Eco Counter Multi which collects bicycle, pedestrian, and vehicle counts data 

using tubes and IR in a combination system.  There are also locations that use just an Eco 

Counter IR or Traffix device to collect traffic data for multiple user types.  Where bicycle and 

pedestrian counts are collected with these devices a tube device is deployed as well in order to 

separate out the bicycle users form the pedestrians.  The table also shows that loop devices as 

well as slabs are used in permanent locations.  Total there are 195 device deployments in either a 

permanent or mobile basis.  This does not mean that there are 195 locations being counted 

however, since multiple devices are needed at certain locations to collect all the traffic moving 

along the roadway.  This is explained in more detail in section 3.3.1.   
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Table 3.1: Summary of Traffic Count Device, Collection, User Type 

3.2 EQUIPMENT VALIDATION AND ACCURACY 

In the sections above published validation evaluations were summarized for each device type 

along with their description.  It would be expected that the equipment used in this research and 

supporting traffic counts program would function similarly.  To be sure and to certify that 

permanent sites were constructed properly, limited validation tests were also performed for select 

locations.  The table below summarizes the accuracy for four sites where validation evaluations 

were performed.  The results show that accuracy for of the devices work well enough for 

Newport Bridge, Colorado Bridge and Galveston Bridge locations with minimum error of 0.0% 

up to 21.4% error but that error for the Franklin Underpass site were considerable with 533% for 

pedestrian traffic.  These locations also collect vehicle counts and were shown to be relatively 

accurate with the Colorado Bridge location being nearly perfectly accurate while the Galveston 

location revealing 7.6% error.  The Franklin Underpass location did not have directly 

comparable data since the counter was not online at the time of the observed data collection.  

However, a comparison of a similar time period reveals reasonable similarity in traffic counts.  

For this location and the bicycle counts and vehicle counts will be evaluated again to better 

understand how well the devices are performing. 

 

Device Type Collection Type User Type # Locations 

Eco Counter Multi (IR and 

Tube) 

Mobile Bicycle 12 

Eco Counter Multi (IR and 

Tube) 

Mobile Bicycle/Ped 56 

Eco Counter Multi (IR and 

Tube) 

Mobile Bicycle/Vehicle 9 

Eco Counter Multi (IR and 

Tube) 

Mobile User 33 

Eco Counter IR Permanent Bicycle 2 

Eco Counter IR Permanent Pedestrian 2 

Eco Counter IR Permanent User 8 

Eco Counter Loop Permanent Bicycle 12 

Eco Counter Loop Permanent Pedestrian 2 

Eco Counter Loop Permanent Vehicle 10 

Eco Counter Slab Permanent Pedestrian 2 

Eco Counter Slab Permanent User 2 

Eco Counter Tube (Vehicle 

&/or Bike) 

Mobile Bicycle/Vehicle 43 

Traffix Counter (Parks) Mobile User 1 

Traffix Counter (Parks) Permanent User 1 
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Table 3.2: Validation Evaluation of Bicycle and Pedestrian Traffic Counters in Study Area 

Location Equipment 

Description 

Data 

Collection 

Date/Time 

North Sidewalk South Sidewalk Bikes in Road Vehicles in Road 

Mode Observe

d 

Eco % Diff. Mode Observe

d 

Eco % 

Diff. 

Obse

rved 

Eco % Diff. Observed Eco % Diff. 

Newport 

Bridge 

Loops in 

roadways, 

loops in bike 

lane, Eco 

Multi on 

sidewalk 

5.16.2017 

2-6 PM 

Ped/bikes 35 31 -11.4% Ped/bikes 56 42 -

25.0% 

27 26 -3.7%       

Colorado 

Bridge  

Loops in 

roadways, 

loops in bike 

lane, slabs 

on sidewalk 

5.16.2017 

12-4 PM 

Peds 7 6 -14.3%         11 10 -9.1% 5268 5266 0.0% 

Franklin 

Underpass 

Loops in 

roadways, 

loops on 

edge of 

roadway 

(bikes), Eco 

Multi and 

loops on 

sidewalk 

5.16.2017 

12-4 PM 

Peds 37 39 5.4% Peds 39 38 -2.6% 6 38 533.3% 3785 4570 20.74% 

Bikes 17 23 35.3% Bikes 23 34 47.8%             

Galveston Loops in 

roadways, 

loops in bike 

lane, Eco 

Multi on 

sidewalk* 

5.16.2017 

12-4 PM 

Ped/bikes 32 32 0.0% Ped/bikes 5 5 0.0% 28 22 -21.4% 4170 4486 7.6% 
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3.3 RAFFIC DATA COLLECTION  

Traffic data is collected in two methods depending on whether the device is permanently 

installed equipment or mobile and able to be moved around the study area to collect at multiple 

locations.  All of the Eco Counter devices transmit their data via wireless cell phone connection 

where the data is stored in a cloud based data repository available through a web portal or 

application programming interface (API).  The mobile traffic counting devices are deployed 

using paid contract staff with details on the deployment maintained in a Google spreadsheet.  

The traffic data and the deployment information are combined in a custom R based software 

program that processes, cleans and stores the data for use by agency and research staff.  The 

below section describes these processed in more detail. 

3.3.1 Location and Site Setup 

Counting bicycle and pedestrian traffic is more complicated than collecting vehicle counts.  The 

expected zone of travel for vehicles is more certain, with vehicles traversing the roadway in a 

predicable fashion on a limited area of the right-of-way.  For that reason bicycle and pedestrian 

traffic cannot be collected in locations without specific conditions.   

Devices that use IR cannot face the device towards vehicle traffic where it may erroneously 

count a moving vehicle as a user.  The same is true for pointing the IR devices towards parking   

lots where the warmth from the engine of a parked vehicle may also register as a pedestrian.  The 

pneumatic tube counters that collect bicycle traffic data require are only able to accurately collect 

data on roads with widths of 30 feet or less which makes the deployment of multiple devices at a 

single location necessary.  To count the total bicycle throughput at a given location, it’s often 

necessary to collect traffic counts on the sidewalk and in the roadway which includes a bicycle 

facility like a bike lane.  In order to do both sides where the roadway is greater than 30 feet in 

width, it’s common to deploy up to four devices at a single location.   

In order to fully account for all traffic on a travel network link the seemingly more complicated 

approach described above was necessary.  There was not any published approach to managing 

bicycle and pedestrian traffic counts in the Traffic Monitoring Guide (2013) and so a system was 

devised and is presented below.  It balances the inherent complications of collecting these data 

with an eye on simplicity for users that will be required to operate the data collection program in 

the future.   

Traffic count locations are composed of sub locations where various modes of travel are 

collected for available directions of movement.  The figure below attempts to describe a potential 

setup where bicycle, pedestrian, and vehicle traffic are all being collected simultaneously.  In the 

example below the location (Location Id 001) has six sub locations collecting data using two 

loops, two IR, and two pneumatic tube devices.  The two IR devices collect users (both people 

on bike and walking) that use the sidewalk while the two embedded loops collect bicycle traffic.  

These data are combined and the pedestrian traffic is calculated by removing the bicycle users 

from the total users collected by the IR device.  Roadway bicycle and vehicle traffic is collected 

using the two tube counters.   
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Figure 3.7: Example count location setup 

Data from all of the counting devices is streamed on a daily basis to an online data repository 

(named Eco Visio) managed by the hardware vendor.  These counts data can be retrieved 

through a web based platform with some reporting functions including the ability to make charts 

and compare locations.  The counts data are also available through an application programming 

interface (API) which can be accessed through various computer programing tools.  This 

research project has constructed a custom data processor built in the R open source statistical and 

programming language which has API functionality.  For permanent count locations the 

processing is straight forward and only involves aggregating data by direction (for total link 

flows) and mode.  For locations where mobile equipment is used exclusively the processing is 

more complex.   

This process starts by first retrieving data retrieved from the online data repository through R 

using the API call and an API key purchased from the vendor.  The counts data are then 

combined with information about a given device deployment so that the appropriate counts data 

are retrieved for the right time for the respective location since the online data base is agnostic 

about the location of the device.  To clarify, a given mobile device might collect data in 10 

locations throughout the year and those counts data are all stored in the online database without 

the location information or anything related to the deployment.  The deployment information has 

details on when the location was at a given locations and for what time period so data can be 

extracted and assigned to the appropriate location.  The R software also employ information 

stored in a geodatabase to help sort and process the locations properly in addition to adding 

attributes like the facility type and link level attributes such as the functional classification of the 

adjacent roadway.  This process all happens automatically using the custom R software written 

for this effort.   
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Figure 3.8: Traffic data transmission and processing schematic 

Figure 3.9 below shows an excerpt of the deployment information entered into Google Sheets by 

the deployment contractors.  The information includes the timestamp of the latest information 

entered for that row, the Location Id and description, device name (vital for linking to the counts 

data), the deployment date and time, the collection site type, either a sidewlak, roadway, or bike 

lane, and the pickup date and time as well as any notes of interest to the deployment. Other 

elements collected in the Google Sheets include the email address of the user submitting the 

information and a picture of the deployment for verifying its setup.   

 

Figure 3.93: Example of Google Sheets deployment information 

To expand the information available on the count locations a spatial database of characteristics 

has been constructed that carries the location and sub locations attributes so that a linkage can be 

made.  Attributes such as the facility type, e.g. presence of a bike lane or off-street path, can then 

be appended to the traffic counts data in order to perform later analyses.  These data are all 

stored in a geodatabase titles Bend_Spatial_Data.gdb.  
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3.3.2 Data Schema 

The data schema is that shows the various data elements from the three data sources are 

presented below.  In the appendix, a data dictionary has been provided for each element in the 

data schema.   

 

Figure 3.40: Data schema for traffic counts processing 
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4.0 TRAFFIC COUNTS DATA PROCESSING 

This section describes the data processing that occurs to clean and annualize the traffic counts 

data.  As of the publication of this report data collection devices have gathered nearly 29,000 

daily records from nearly 200 sub locations in the study region.  In order to ensure high quality 

data for further analyses, these data need to be checked and any data not fully representative of 

traffic conditions should be removed to avoid entering bias into any results that employ these 

data.  However, doing manual review of this data by staff would be costly and take too much 

staff time so what follows includes a description of a multi-stage process that looks for certain 

data problems through an automated method.  Data problems include consecutive zeros and 

excessively high values and well as other outliers.  All data anomalies are flagged and retained 

so that any analyses using these data may still have access to suspect data if needed and to ensure 

transparency for other data users.   

Annualization of data is necessary when a full year of observed counts is not available.  This 

research uses two techniques including the traditional factors as well as a method proposed by 

Roll and Proulx (2017) called the Seasonal Adjustment using Regression Method (SARM).  The 

traditional traffic factor method creates extrapolation factors where a full year of counts is 

available and applies them to short term counts.  The SARM approach utilizes the established 

relationship between daily conditions such as weather and the daily traffic counts to estimate 

traffic during days when no data was collected.  Both of these methods are utilized and 

compared. 

4.1 FLAGGING SUSPECT DATA 

The data cleaning algorithm looks for and created flags for the following error types: 

 At least 3 days of consecutive zeros 

 Rolling Mean Error (Outside specified error boundary) 

 Excessively large value over 2,500 (For nonmotorized only) 

 Manual Error Check Required 

This process is explained using the flow chart below.  The process is applied to each sub location 

of data, as opposed to the parent location, so that errors can be found at the most disaggregate 

level.  This will allow utilization of other data from the related sub locations, provided counts 

can be ‘filled in’ at the suspect sub location.   
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Figure 4.1: Data error flagging process  

4.1.1 Consecutive Zeros 

As shown in Figure 4.1 above, the first check performed on the sub location data is to look for 

daily records where the traffic counts were zero for three or more consecutive days.  Based on 

knowledge of some of the locations where these errors have occurred, these records are 

presumed to be the result of equipment failure.  These data are flagged with a tag indicating this 

type of error.   

4.1.2 Rolling Mean  

The primary element of the data flagging process uses a simple approach of calculating the 

rolling mean of the daily observations and calculating a confidence boundary where observed 

values are compared with and if the observed daily values fall within the boundary the record is 

not flagged with an error tag.  If the observation falls outside the confidence boundary then it is 

given an error flag.  This process separates weekdays and weekends since those conditions alone 

relate to significant variation at many locations.   

4.1.3 Excessively High Values 

For nonmotorized traffic counts, records are flagged when they exceed 2,500 counts per day.  

This value was determined by manual inspection of these kinds of events and expert judgment 

regarding the reasonableness of extreme high values for the study region.  Some high values are 

expected on holidays and special events that would induce nonmotorized travel such as a 

marathon or organized bicycle ride.  In order to avoid incorrectly flagging data collected on days 

with an error flag, an additional process was created that looks across locations to determine days 
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where high values are detected and creates a lookup table of dates.  If a given day is flagged as 

either excessively high, or outside the upper bounds of the confidence boundary but is on a day 

where a special event may have occurred, the error flag is moved.  

4.1.4 Manual Error Check 

Lastly, if there is not sufficient data to calculate a rolling average, such as when there are three or 

fewer days of data, a manual inspection of the data is carried out.  

The results of these error checks and the application of flags are shown for a sub location below 

in Figure 4.2.  In this example only four daily counts fall outside the rolling mean confidence 

boundary and two of those are potential special events.  One of those days, the December 8th of 

2018 date, was checked and in fact an event called the Holiday Lights Ride took place on that 

date and likely led to the higher than expected value.  

 

Figure 4.2: Example of rolling mean and potential special event flag 
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4.2 RESULTS OF FLAGGING ALGORITHM 

The results of applying these flags are shown below in table.  For the bicycle user daily traffic 

counts, the most common errors are consecutive zeros followed by observations falling outside 

the rolling mean confidence boundary and then observations needing manual review and only 

four observations with an excessive value flag (greater than 2,500 daily bicycles).  A similar 

outcomes is shown with for the pedestrian, user, and vehicle traffic with the greatest number of 

error flags being assigned to observations with excessive zeros following by the rolling mean and 

excessive values.  For all of the nonmotorized traffic counts, about 75% had no errors detected 

and are considered usable.  Of the 24% with a detected error, 14% were due to the detection of 

consecutive zeros which is associated with known equipment failures.  The annualization process 

will be able to interpolate these missing data when, as is the case for most of the permanent 

count sites, sufficient data exists to estimate seasonal adjustment models using the SARM 

approach.   
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Table 4.1: Summary of Study Area Travel Network   

User Type Error Code 

Type 

Observations 

with Error 

Total 

Observations 

% of Daily 

Observations with 

Error Flag 

Bicycle Manual Error 

Check 

130  10,605  1.0% 

Excessive Value 4  10,605  0.0% 

Rolling Mean 1,069  10,605  10.0% 

Consecutive 

Zeros 

1,996  10,605  19.0% 

No Error 7,406  10,605  70.0% 

Pedestrian Manual Error 

Check 

60  5,513  1.0% 

Excessive Value 201  5,513  4.0% 

Rolling Mean 395  5,513  7.0% 

Consecutive 

Zeros 

646  5,513  12.0% 

No Error 4,211  5,513  76.0% 

User Manual Error 

Check 

34  6,587  1.0% 

Excessive Value 261  6,587  4.0% 

Rolling Mean 420  6,587  6.0% 

Consecutive 

Zeros 

556  6,587  8.0% 

No Error 5,316  6,587  81.0% 

Vehicle Manual Error 

Check 

53  6,727  1.0% 

Rolling Mean 319  6,727  5.0% 

Consecutive 

Zeros 

1,745  6,727  26.0% 

No Error 4,610  6,727  69.0% 

Total 

Nonmotorized  

Manual Error 

Check 

224  22,705  1.0% 

Excessive Value 466  22,705  2.1% 

Rolling Mean 1,884  22,705  8.3% 

Consecutive 

Zeros 

3,198  22,705  14.1% 

No Error 16,933  22,705  74.6% 
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4.3 SPLITTING USER DATA INTO BICYCLE AND PEDESTRIAN 

COUNTS 

Traffic count hardware used in Bend collect pedestrian and bicycle separately in most instances, 

however numerous sites have data where user counts are collected as well as bicycle and 

pedestrian counts.  In these instances, the ratio of bicycle and pedestrian counts from the bicycle 

and pedestrian specific sensors are used and applied to the user counts in order to estimate 

bicycle and pedestrian counts separately.  This process is applied to counts data by weekend and 

weekday separately, since the ratios appear to fluctuate depending on the day of the week, as 

well as by month. 

4.4 ESTIMATED ANNUAL TRAFFIC VOLUMES 

Once data is retrieved, processed, and cleaned, it is most useful as an annual and average daily 

value since most analyses including in crash and health, seek these comprehensive values.  For 

sub locations where data was collected intermittently, annual and annual average daily values 

take into account seasonal differences and ensure the reported values are not too high if the 

counts were collected in part of the year more favorable to nonmotorized traffic, or two low if 

the data was collected during cold and rainy parts of the year.  Data collected at permanent sites 

that experienced equipment issues, the annualization process will fill in the gaps since the facility 

was still operating as normal.   

Methods for matching short term sites with permanent sites using land use characteristics were 

tried but ultimately it was decided that a single factor would be used.  Because the literature 

indicates.  Esawey (2014) demonstrated that using a single daily factor can minimize error 

compared to the tradition day of week by month factors so this approach was applied for this 

research.  
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5.0 DATA IMPUTATION AND MODELING INTRODUCTION 

Chapters 5 through 8 document work done for ODOT Research Project SPR 813 – Methods for 

Estimating Nonmotorized Travel Activity.  Specifically this report covers work required in Task 

4 – Data Analysis and Modeling.   This project seeks to develop nonmotorized traffic data 

collection practices applicable across the state of Oregon by demonstrating data collection 

protocols and processes in partnership with the Bend MPO.  Following these sets of tasks, the 

data is employed in estimating traffic activity across the network.  This report will focus on the 

implementation of machine learning tools for data imputation of daily traffic counts as well as 

the use of machine learning in data fusion modeling.   

Machine learning has quickly become a commonly used tool in a number of domains including 

image and speech recognition, medical diagnosis, genetics, finance, and marketing.  This form of 

artificial intelligence allows data scientists to harvest more information from data and take full 

advantage of larger datasets with sizable number of features and interaction effects among 

features.  The transportation domain has also been utilizing machine learning techniques but 

most examples remain in the research side of the field with fewer examples found in practice.  

Two applications of machine learning are explored in this report including its deployment in data 

imputation of traffic counts data and data fusion modeling or direct demand modeling. The 

report will first summarize literature related to imputation of traffic counts followed by a 

literature review of data fusion or direct demand modeling.  Both motorized and nonmotorized 

research will be included in these reviews.  Following the literature review, this report will 

document the traffic count data imputation process developed, tested, and implemented using a 

variety of analytic techniques.  Lastly, this report will describe the data developed and deployed 

in a data fusion models for vehicle, bicycle, and pedestrian traffic in the study region. 
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6.0 TRAFFIC COUNT IMPUTATION AND DATA FUSION 

MODELING LITERATURE REVIEW 

The literature review will cover two topics including traffic counts data imputation as well as a 

review of direct demand modeling and related data fusion modeling work.   

6.1 MOTORIZED TRAFFIC COUNT IMPUTATION  

In the past traffic count data imputation was relatively widespread with Albright (1991) 

documenting at least 23 states using some procedure for imputation on their permanent counter 

devices.  Imputation is often necessary because of the common occurrence of missing data in 

automatic traffic recorders or ITS data collection devices (Zhong et al 2005).  Though 

widespread, data imputation became a questionable practice as public agencies neglected to flag 

data that was imputed from those that were actually observed leading to a small crisis of 

confidence in the traffic counts data.  In the early 1990s, the American Society for Testing and 

Materials (ASTM) and the Association of State Highway Transportation Official (AASHTO) 

adopted a Base Data Integrity principle that highlighted the significance of raw traffic 

measurements being retained without modification or adjustment.  Further, the principle of Truth 

in Data directs highway agencies to clearly document any procedures used in any imputation 

process. (ASTM International 2018)  As ITS systems that collect volume data have expanded, 

imputation methods are needed both to fill in missing data but also to predict traffic conditions 

on a short term basis for operational needs.  Missing data for these systems have been reported to 

be as much as 15% (Chandra and Al-Deek 2004) and 14% (Ni et al 2005). Most of the recent 

literature documents more statistically principled techniques for data imputation and seems to 

shed the simplistic methods of the past except for base method comparisons.  Some studies are 

hard to compare with others because they report estimation results for hourly count estimation 

while others look at monthly or annual estimation quantities. 

Traffic count imputation uses three broad categories of methods including historical and factor 

based, time series analysis, and machine learning.  Historical or factor based methods use 

historic observations of traffic at a given location to fill in missing data or develop factors using 

traditional factoring approaches to estimate missing data.  Moving average techniques use 

varying levels of sophistication to employ larger sets of observations to inform imputed values 

for missing data.  Machine learning approaches may utilize a variety of algorithmic techniques 

and will be the approach reviewed in most details below, followed by moving average 

approaches with only cursory review of historic and factor based approaches.   

In a survey of state DOT monitoring programs from 1990, it was found that at least seven states 

used simplistic procedures of imputing missing traffic count records.  For instance, it was found 

that South Dakota DOT would use the previous three years of counts for the same period needed 

for imputation to inform their missing values while Delaware DOT would look at the same 

period during the previous and following month to inform their missing data estimate. (Albright 

1990).  Montana DOT would use historical approach and apply a change factor based on 

reduction or growth observed in nearby sites.  Some of these approaches were reviewed by 
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Zhong et al. 2005 and found that for estimating hourly traffic counts, these simplistic historical 

approached resulted in more error compared to a relatively more sophisticated moving average 

approach.  Turner and Park tested historical factor approaches on a number of scenarios where 

data were missing at random and also not at random finding that results, even when missing up 

to eight months of data, error was low at less than 5% (Turner and Park 2008).  

A time series is a chronological series of data on a given variable, in this case traffic counts data 

collected on a five minute, hourly, or daily basis.  Time series data are analyzed hoping to find a 

historical pattern for use in forecasting unknown, typically future, values.  Time series modeling 

is based on the assumption that previous trends offer information to predict future values (Box 

and Jenkins, 1970).  Numerous techniques exist for modeling univariate time series analysis such 

as Holt-Winters, exponential smoothing, and Box-Jenkins.  Exponential smoothing should not be 

applied to data with seasonal variation and instead the Holt-Winters procedure should be applied.  

Box-Jenkins procedure is a common tool for time series analysis and is more commonly referred 

to as autoregressive integrated moving average (ARIMA) model using Box-Jenkins 

methodology.  Autoregressive and moving average components are considered in these models, 

thus the name integrated model since the stationary model that is estimated to the differenced 

data has to be summed or integrated to provide a model for the non-stationary data (Chatfield 

1989).  It has been noted that ARIMA (0, 2, 2) and Holt-Winters approaches are equivalent 

(Castro-Neto et al. 2009).  Sharma el al. (2004) used ARIMA and found it worked better for 

predicting hourly volumes compared with time delay neural network, and factor approach.  

(Sharma et al. 2004).  

Some kind of moving average procedure has been used in traffic imputation since at least the 

1990s where it was employed by London’s Department of Transportation (Redfern et al. 1993).  

Zhong et al (2005) found the moving average approach employed by London DOT performed 

better than the historic and factor based approaches of some state DOTs.   

6.2 NONMOTORIZED TRAFFIC COUNT IMPUTATION 

Esawey (2018a) tested a Monte Carlo Markov Chain (MCMC) multiple imputation model to 

impute missing data including data missing completely at random (MCR) and data not missing at 

random (NMR).  The idea behind this approach is to take advantage of information from 

historical information from the count station, patterns in data from neighboring stations, and 

weather to develop an estimate of missing data.  The tests found that in the MCR tests results of 

were better than NMR but only tested missing data scenarios of up to four months.  The work 

also found the MCMC was significantly better than the baseline method of using monthly 

factors. .  Beitel et al (14) experimented with a process to automatically flag anomalous bicycle 

traffic counts, remove them, and impute replacement observations using a DOY of year factor 

from sites that exhibited similar day of factor year patterns.  This research illustrated the 

effectiveness of the day of year factoring approach for data imputation when traffic count sites 

can be matched with other permanent sites.  This approach however, requires enough data and 

counters to match the traffic count site to a site with similar day-of-year factors which is not 

always possible.  The author’s use a correlation coefficient threshold of 0.75 to determine sites to 

match and average the DOY for situations where multiple sites are matched.   Additionally, 

Beitel et al. (14) did not examine the ability of the method to impute pedestrian counts and how 

often the ability to match any site with a set of sites to use for factors. 
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6.3 DATA FUSION AND DIRECT DEMAND MODEL LITERATURE 

REVIEW 

There are numerous methods for estimating traffic volumes with the most common methods 

being a travel demand model, statistical model, geospatial analysis, machine learning, or image 

processing.  The focus of this review will center on statistical modeling and machine learning 

techniques.  This section of the literature review will focus first on motorized traffic and then be 

followed by the literature found on nonmotorized traffic. 

6.3.1  Motorized Traffic Volume Estimation 

Numerous attempts to use statistical models to estimate traffic counts are present in the literature.  

These models use the general functional form, aiming to find relationships between roadway 

characteristics like number of lanes, functional classification, and access to jobs and people and 

vehicle counts.  Mohamad et al. (1998) used data in 40 of Indiana’s 92 counties to estimate a 

multivariate regression model to predict AADT for vehicles.  Validation of the models was done 

using additionally collected data in 8 randomly selected counties.  Results showed that prediction 

error in the model ranged from 2% to 34% with a 17% mean percent difference.   

Xiu et al. (1999) used data from the Florida DOT’s traffic count database including 89 count 

stations across 40 counties to estimate a model relating roadway features, surrounding land use 

and socio economic factors to the traffic counts.  The final selected model produced estimates 

that ranged from 1% absolute present different to 57% difference with an average error of 22.7 

percent.  Zhao and Chung (2001) used over 800 counts from Broward County, Florida to 

estimate a multiple regression model employing roadway features like number of lanes and 

accessibility measures.  The authors also tried using spatially weighted regression techniques in 

their analysis procedures.  The range of error for the best model was between 0.3% and 155.6 

percent with no mean error reported though the authors state that 73% of the comparisons 

possessed 30% error or less. Tang et al. (2014) used a number techniques including neural 

network machine learning Gaussian maximum likelihood (GML), and non-parametric 

regression.  The results of estimating near-future volumes on roadways showed that the GML 

approach worked best though all techniques had mean error of 2% or less.  Sekula et al. (2018) 

tests multiple machine learning algorithms to estimate hourly traffic volumes on the Maryland 

highway network.  Machine learning techniques include a fully connected feed forward multi-

layer artificial neural network (ANN), linear regression, k-nearest neighbor, support vector 

machines with linear kernel, and random forests.  The ensemble ANN works best with 22% 

median absolute percent error.   

6.3.2 Nonmotorized Traffic Volume Estimation 

Significant parts of the following literature review are derived from the previous report on 

nonmotorized traffic modeling Bicycle Count Data: What is it good for? A Study of Bicycle 

Travel in Central Lane Metropolitan Planning Organization (Roll, 2018) though has been 

updated to reflect recent research.  Facility demand models are an increasingly common method 

for analyzing non-motorized travel but were tried as early as 1977 with Benham and Patel 

(1977).  These models use counts of people walking or people riding bicycles as dependent 

variables and employ weather, built environment, sociodemographic and network characteristics 
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as independent variables to estimate statistical models.  These models are simpler than travel 

demand models and do not include a behavior components or data from travel surveys.  Some of 

the research below, especially the more recent research, attempts to estimate network wide 

demand while other research only estimates models to determine how each dependent variable 

relates to the counts without ever applying the model to the rest of the study area.  

Lindsey et al. (2007) uses mixed-mode (bicycle and pedestrian) counts collected by infrared 

devices in Indianapolis, Indiana to correlate weather, temporal, sociodemographic and urban 

form variables with non-motorized travel activity.  The authors use a log-linear model 

specification to determine the effect that these variables have on observed daily traffic volumes.  

Findings suggest reasonable relationships between dependent and independent variables across 

four model specifications with high explanatory power, with adjusted R2 of 0.7966.  This 

research uses gross measures of socio-demographics and urban form, assigning Census tract 

information where counts are collected to the count location.  Counts for this research were 

collected on off-street paths and were not applicable to on-street locations.   

Hankey et al. (2012) use two-hour evening peak period (4:00 - 6:00 pm) counts of bicyclists and 

pedestrians from 259 locations in Minneapolis, Minnesota to estimate models relating counts to 

weather, built environment, socio-demographics, and infrastructure variables.  Measures of 

socio-demographics and some of the built environment variables’ areal unit is at the Census 

block group level.  The authors tried two model specifications, ordinary least squares (OLS) and 

negative binomial regression to understand the relationship between the dependent and 

independent variables concluding that due to the over dispersion of the count data the negative 

binomial distribution is best.  For the bicycle count models, Hankey et al. produce results using 

the negative binomial regression technique with pseudo R2 value of 0.476 with eight of the 

independent variables not significant at the 0.05 level.  The authors attempt some validation, 

comparing estimated counts with observed counts though with no hold out and no discussion of 

absolute error just a visual inspection.  Additionally, the authors expand the two-hour counts up 

to 12-hour counts using some locally derived factors which however substantiated, would likely 

introduce some error into any application of these models to the entire network.  This application 

of the model to the entire network results in citywide estimates of 12-hour non-motorized traffic 

for each link of the network.   

Wang et al. (2014) estimate models relating weather and sociodemographic variables to mixed-

mode counts from six off-street counters.  The authors compare the use of OLS and negative 

binomial regression techniques, concluding that the latter is a better specification based on the 

distribution of the counts data and resulting error from validation tests which was as low as 

16.6% for the general model (pooled data from all six locations).  The authors suggest that the 

models could be used to estimate non-motorized volumes at locations where trails construction is 

proposed.  Hankey and Lindsey (2016) build on past research using additional mixed-mode 

count data from the Minneapolis, Minnesota which include afternoon peak period (4:00 pm – 

6:00 pm) counts from 954 locations for years 2007 through 2014.  The authors use linear 

regression models to relate weather, sociodemographic, and infrastructure to collected counts 

data experimenting with models using varying numbers of independent variables hoping to find a 

reduced form specification usable in areas with less available data.  This research is the first to 

try network density variables where the total length of certain network characteristics (e.g. on-

street bicycle facilities) are employed as independent variables with results yielding intuitive 
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results in some but not all cases.  For example in the statistically optimal model off-street trail 

network meters within the vicinity of the bicycle count location are positively correlated with 

more bicycle volume but local roads are negatively correlated.  The authors perform robust 

validation steps for their core and time-averaged models where they hold out (10%) a random 

sample of their data, estimate and apply their model, and compare with the held out data and do 

this process 100 times to assess predictive capability.  Using R2 as a performance metric the 

authors report measures no higher than 0.55 suggesting the models work moderately well as 

predictive models.   

Fagant and Kockelman (2015) used 340 three-hour peak period counts collected in the Puget 

Sound area of Washington to test how the features of the Highway Capacity Manual’s bicycle 

level of service (BLOS) have an impact on bicycle traffic.  The authors tested the impact of the 

BLOS features by using a negative binomial and Poisson regression model finding that vehicle 

volume is negatively correlated with bike volumes, as is the number of lanes, and higher speed 

limits.  Bike lane width was associated with an increase in bicycle volume as were many of the 

control variables such as mean daily temperature and if the count was taken on an off-street path.  

Wang et al. (2016) use mixed-mode counts from multiple places in the U.S. including 

Minneapolis, Columbus, and the Central Ohio to test the transferability of the facility demand 

approach across these areas.  The authors estimate separate models for each city using AADT as 

the dependent variable which was possible because counts data were collected from 17 (from all 

areas) permanent counters collecting year round.  Independent variables included 

sociodemographic and built environment variables from U.S. Environmental Protection Agency 

(EPA) 2010 Smart Location Database (SLD) in addition to accessibility measures from the 

National Accessibility Observatory based at the University of Minnesota.  The models used a 

negative binomial specification but did not include any infrastructure variables.  The resulting 

models for each city had pseudo R2 values of 0.64, 0.576, and 0.318 for Minneapolis, Columbus, 

and Central Ohio region respectively.  Validation tests were performed similar to Hankey and 

Lindsey (2016) where some data is held out and later compared to estimated counts.  Different 

tests applying the models within each of the cities and also across cities were performed with 

error of 27% 22% for Minneapolis and Columbus respectively.  The cross city validation 

resulted in considerably higher reported error suggesting transferability of models across cities 

results in less much less reliable estimates.  Since most studies are done using slightly different 

methods and data it’s hard to directly compare the outcomes.   

Proulx and Pozdnukhov (2017) used geographic weighted regression to fuse crowd sourced 

bicycle data from Strava Metro and the local bicycle share system, as well as outputs from the 

regional travel models to train a model on 536 directional bicycle counts at intersections.  The 

models were rated based on root mean squared deviation (RMSD with no measure of error 

reported, finding that the models that used the travel model outputs which employed a more 

sophisticated route choice bicycle that better accounted for actual bicyclist’s behavior worked 

best.  Additionally the authors found the use of bike share data decreased RMSD and that using a 

Gaussian based weighting matrix for the geographically weighted regression outperformed the 

ordinary least squares regression approach.   

Hankey et al. (2017) developed a nonmotorized count program specifically to feed data into a 

direct demand model.   They performed a stratified random sample using functional 
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classification and network centrality as features to guide the stratification.  Collecting one week 

of counts at 101 bicycle locations and 71 pedestrian locations the authors use a Monte Carlo hold 

out validation technique (20% holdout) to determine the best model based on r-squared.  

Covariate data included 199 different features including functional classification, bike facility 

type, distance to population and commercial area as well as measures of centrality.  The final 

selected model included five variables for the bike model and 6 variables for the pedestrian 

traffic model with r-squared values of 0.52 and 0.71 respectively.  These final models are applied 

to the entire network but no total bike or pedestrian miles traveled are reported. 

Ermagun et al. (2018) used permanent count data from 32 sites from 14 urban areas in the U.S. 

with an aim to further develop an off-street trail forecast tool.  The authors developed 

econometric models using generalized linear form with land use data from the Environmental 

Protection Agency’s Smart Location Database (SLD) to understand how land use impacts 

nonmotorized traffic activity.  This research uses McFadden’s pseudo r-squared and mean 

absolute percent error as performance metrics for assessing model quality.  No discussion is 

offered about the various models tried before concluding on model specifications that include 

network density, a measure of higher education, accessibility, water density, lower education, 

and worker age with different modes using different combinations of variables.  The pseudo r-

squared measures for the bike, pedestrian and mixed-mode models were 0.63, 0.61, and 0.71 

respectively.  Mean absolute percent error was 65%, 85% and 46% for bike, pedestrian and 

mixed mode models.  The authors tested a correction factor by regressing error against select 

SLD variables and were able to improve model result to 48% 58% and 39% mean absolute 

percent error for the bike, pedestrian, and mixed mode models respectively.  Griswold et al 

(2019) estimated a direct demand model using pedestrian volumes collected at 1,270 

intersections across the state.  These pedestrian volume counts were collected on a short term 

basis of 12 hours or less and we factored using permanent count stations matched to short term 

sites based on surrounding land use.  The authors developed a feature set of 75 variables and 

concluded the use of just eight variables based on step-wise selection process.  The results of the 

model were rated based on r-squared and residual sum of squares with the final model r-squared 

of 0.714 and no reported value of RSS in the paper.  The results of this research have been 

applied to all 12,414 intersections on the CalTrans state system in order to be used in crash 

analysis.   

6.3.3 Machine Learning Literature Review and Overview  

Machine learning has become a more common analytic approach when analyzing data sets 

containing complex interactions among covariates or features and has been shown to compare 

well with traditional methods (Diaz-Uriarte & Alvarez de Andres 2006; Heidema et al. 2006).  

Many kinds of machine learning algorithms exist and include supervised learning methods where 

a response variable is defined by the user as well as unsupervised where the algorithm 

determines patterns of importance.  Machine learning tasks are typical categorized as either 

classification, where the model is learning to predict a binary or categorical variable, or a 

regression problem where a continuous variable is being predicted.  This review will focus 

supervised learning algorithms for a regression problem (traffic counts) using tree based 

ensemble methods including random forest and extreme gradient boost (XgBoost).   
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Random forest algorithms work by drawing random samples of data from the input data set and 

fit a single classification tree to each sample.  Classification trees are constructed recursively by 

selecting the next splitting variable by locally optimizing a criterion such as GINI gain (Strobl et 

al 2008).  Because of the random nature of the samples single classification trees can be unstable 

but when multiple trees are combined into a forest or ensemble, prediction accuracy increases as 

those predictions are averaged.  Multiple studies have been done to demonstrate the accuracy of 

these predictions across various fields (Bauer and Kohavi al; 1999; Breiman 1996; Dietterich 

2000).  Ensembles or forests help to smooth hard edges of decision trees because of random 

selection, some features to enter the set of predictor variables that may otherwise be 

outperformed other features.  This characteristics of random forests may reveal important 

interaction effects with other variables that would have otherwise been missed (Strobl et al. 

2008).  Gradient boosted decision trees have become increasingly popular machine learning 

algorithms because of their speed and performance.  Extreme gradient boosting (XgBoost) uses a 

more regularized model formalization to control over-fitting but is still built on the gradient 

boosting framework proposed by Freidman (2000).  Boosting constructs the model in a stage-

wise process and then generalizes them by allowing optimization of a determined differentiable 

loss function. Tree based and machine learning techniques with gradient boosting frameworks 

will be the methods used in this research.   

6.3.4 Feature/Variable Importance Overview 

A diagnostic measure for machine learning algorithms used in this research include a measure of 

variable importance.  Because many audiences are not familiar with machine learning generally 

variable importance deserves its own explanation and review below to better acquaint readers 

with what information this measure can provide.  The below section will discuss how variable 

importance is calculated for random forest and XgBoost machine learning algorithms.   

For this research the measure used for describing variable importance is limited to Gini impurity 

and is essentially a measure of the number of times a feature is used to make node split for a 

given tree in a given forest.  In most calculations of feature importance using Gini impurity the 

sum of the GINI decrease for every tree in the forest is aggregated each time that feature is 

chosen as a splitting variable.  This aggregate value is then divided by the number of trees in the 

forest for an average.  The scale of the final measure is not important but its comparison to other 

features gives model users the relative importance of that variable compared to the others.  This 

research will document feature importance as a way to diagnose how the model is utilizing input 

features.   

6.3.5 Cross Validation Overview 

This research utilizes statistical models and machine learning to solve analytic problems 

important to meeting the research objectives.  A key element of testing the predictive 

performance of these algorithms is the use of cross-validation.  Cross validation is the process of 

dividing data into training and testing sets where the training set is used to develop a model 

which is then applied to the training set.  Since the observed values being predicted by the model 

are available in the training set, a performance metric can be computed by comparing the 

observed and estimated values.  Common measures are percent error and root mean squared 

error (RMSE), both of which are used in this research.   
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Cross validation can be used to gauge the performance of any kind of model, whether a 

traditional statistical model or a machine learning model.  In machine learning, cross validation 

is used to gauge model performance, as previously described, but also to train a model by 

iteratively specifying a model, testing its performance, and then adjusting elements of the model 

such as which variables are used to make splits in trees in the random forest algorithm.  There 

are many kinds of cross-validation but for this research we will use 10-fold, leave-one-out, and 

exhaustive.  Below are detailed descriptions of these techniques: 

 10-fold – In 10-fold cross-validation the data is partitioned into 10 equally sized 

subsamples at random or using a stratified random selection.  Models are then 

estimated on nine of the 10 partitions holding one partition aside to test the model 

application.  The model is applied and then compared to the one partition that was 

held out and the estimated values are compared with the observed and a measure of 

error or model performance is computed. This is done until each of the 10 partitions 

are held out of the model estimation.   

 Leave-one-out – In leave-one-out cross validation each data point is used as a test set 

and the model estimated on the remaining data then the model is applied to see how 

well can estimate the data that was not used in the model training.  This is done until 

all the data points have been left out.  A summary of the error, either mean or median, 

is then computed and used to gauge the model performance. 

 Exhaustive – Exhaustive cross validation tests all possible combinations of data 

being divided into training and sample sets.  A deeper explanation is provided in the 

section below on traffic counts imputation and is deployed to tell which months the 

imputation modeling process works best for by testing all possible combinations of 

months being in the training and test set.  
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7.0 TRAFFIC COUNTS IMPUTATION  

It is not uncommon for a traffic count sensor to stop collecting data due to a variety of reasons 

related to counting hardware or data transmission issues.  These outages are usually for 

continuous blocks of time but as noted in the ITS literature, can often times be intermittent as 

well, with just a few days or hours missing.  The existing data are still valuable and the missing 

data can be imputed with confidence, though the uncertainty should be characterized.  This 

section describes the tests performed to understand the best imputation procedures to deploy for 

bicycle, and pedestrian counts in the Bend, MPO study region.  Using nonmotorized traffic 

counts data from across Oregon where a full year of data are available, various machine learning 

techniques are tested to see how well daily, monthly, and yearly volumes can be imputed.  As a 

baseline to compare the machine learning algorithms a negative binomial regression statistical 

model will be estimated and applied as well.   

7.1 IMPUTATION EXPERIMENTAL DESIGN 

To test the efficacy of data imputation using machine learning the experimental approach will 

reflect practical imputation needs using a not missing at random hold out of counts data.  What 

seems to be most common in the nonmotorized counts data for Oregon, are extended periods of 

time when the traffic sensor is either not working or not transmitting data (and forever being 

lost).  Figure 7.1 below shows an example for a count location in Bend MPO study area where 

119 days of day are missing from the traffic counts for 2018 for two separate periods.   

 

Figure 7.1: Period of missing data example 
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These continuous periods of missing data will inform the experimental design of our imputation 

tests but in order to simplify reporting on results whole months will be removed.  In the 

imputation tests, various months of counts will be imputed so that we can document the likely 

error under different scenarios of missing data.  Using full year of counts from traffic sensors 

across Oregon, we can simulate these outages and understand well, the likely error under 

different data outage circumstances.  The work flow for the experiment is described in the Figure 

7.2 below showing three examples of how the imputation procedure will be tested.   

 

Figure 7.2: Missing data experimental design 

For instance in Test 1, we simulate a scenario when traffic counts were available for January and 

those data are then used in the model training process and then applied to estimate February 

through December (11 months) traffic counts.   We then compare those estimated counts to the 

actual counts and compute the absolute percent error (APE). APE is calculated using the 

following equation: 

𝑨𝑷𝑬 = |
𝑨𝑨𝑫𝑻𝒐𝒃𝒔 − 𝑨𝑨𝑫𝑻𝒆𝒔𝒕

𝑨𝑨𝑫𝑻𝒐𝒃𝒔
| 

(7-1) 

In Test 2 both January and February to train the model and then estimate the remaining 10 

months, compare and compute error.  This is done for all possible combinations representing an 

exhaustive cross-validation design.  A summary of absolute percent error by median and 95th 

percentiles will be computed as performance measures.  All possible monthly combinations will 

be tested so that during the application of the final imputation procedure, confidence interval for 

the likely error can be assigned.   There are 4,096 possible combinations of months to use in the 

test, all of which will be tested in this experiment.   
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Multiple machine learning algorithms were tested including conditional inference, random forest, 

and recursive partition.  These algorithms were implemented in the R statistical computing 

environment using the caret package (Kuhn, et al, 2020).  For more discussion of these methods 

please consult the literature review above.  For baseline comparisons a negative binomial 

statistical regression model is estimated and applied.  Based on the success of using a negative 

binomial regression model documented in Roll and Proulx (2017), where reliable annual 

estimates were achieved with as little as six weeks of daily counts, the statistical model is likely 

simpler to understand for some practioners as it uses more common statistical methods.   

7.2 IMPUTATION EXPERIMENT DATA DESCRIPTION 

Table 7.1 below summarizes the daily traffic counts data used in this imputation experiment.  

Two years of data are used utilizing nearly 9,100 daily traffic count records from 23 unique 

count locations throughout Oregon.  Because complete annual datasets are hard to achieve, only 

18 of 25 locations (combination of location and year) have a full year of data while the other 

eight locations have at least 351 days, or 98 percent.  All of the count locations in this research 

are featured on multi-use paths.  The mean values below show that the nonmotorized traffic 

volumes are generally on the lower end with Bend exhibiting the lowest counts and Eugene with 

the highest of the data used in this research.   

Table 7.1: Imputation Experiment Data Summary  

This research is utilizing supervised machine learning algorithms and regression models, 

utilizing the documented relationships between weather, day of week, and lighting conditions, to 

predict the traffic counts sunlight (Miranda-Moreno & Nosal 2011; Tin et al. 2012; Thomas et al 

2012; Rose et al. 2011; Lewin 2011; Nosal and Miranda-Moreno 2012).  Historical climate data 

used as features in the machine learning and negative binomial regression approaches come from 

the National Oceanic and Atmospheric Administration (NOAA) and are accessed using the rnoaa 

library (Chamberlain 2019).  Climate data stations for each city, typically the nearest airport, are 

queried and assigned to the traffic count locations nearest the station.  It was considered to use 

PRISM data that interpolates weather conditions between stations using a gridded system, 

potentially giving better localized weather conditions but this approach is not currently being 

applied.   

City User Type Summary Statistics 

Mean Median Standard 

Deviation 

Number of 

Sites 

Daily 

Records 

Bend Bicycle 56.3 43 54.9 5 2167 

Bend Pedestrian 148 99 150 7 2907 

Eugene Bicycle 340 275 240 3 1095 

Eugene Pedestrian 594 281 576 2 729 

Springfield Bicycle 185 125 182 4 1460 

Springfield Pedestrian 103 97 41.8 1 365 

Total Bicycle 153 81 190 13 5087 

Total Pedestrian 225 105 328 10 4001 
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7.3 IMPUTATION EXPERIMENT RESULTS 

Using the experimental design described above results from the experiments will be shown 

followed by a number of diagnostic summaries of the machine learning algorithms and negative 

binomial regression model.  Figure 7.3 below shows the 95th percentile APE for daily, monthly, 

and annual aggregations, meaning that for 95 percent of the tests the APE was at or below the 

indicated value.  For example, the first column within the bicycle panel, indicates that for 

estimating daily counts using the conditional inference machine learning algorithm, 95 percent of 

the daily count estimates were 24.6 percent or less.  The daily aggregation level shows the 95th 

percentile of the median error of the daily comparisons, meaning that for each hold out test, the 

median APE of all the days in that test were used to calculate 95th percentile as opposed to just 

using the APE in the monthly and annual summaries.  Monthly aggregation directly compares 

entire months or groups of months estimates with observed, while the annual aggregation 

compares the entire year of estimates plus observed months, not in estimate, to an observed 

annual count.  For instance, in Test 1 from Figure 7.2, the experiment estimates counts from 

February through December and the annual error measures the difference between the observed 

annual amount and the estimated counts from February to December plus the observed counts 

from January.  This way we can show the overall annual error when we add imputed data for 

missing data plus remaining observed data.  

 

Figure 7.3: Imputation results for all machine learning aAlgorithms – 95th percentile error 

summary 

Nevertheless, the Figure 7.3 shows the upper end of the possible error using each of the machine 

learning approaches across all tests using all years of data.  For the bicycle traffic counts 

imputation, the random forest appear to work best with random forest demonstrating the lowest 
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error for all of the bicycle tests with 22.5 %, 34.2% and 17.2% for daily, monthly, and annual 

aggregations respectively.  For the pedestrian traffic counts, the negative binomial regression 

model works best, with 21%, 23.9%, and 13.2% for daily, monthly, and annual aggregations 

respectively.  For the bicycle counts, the random forest is significantly better than the negative 

binomial model for each aggregation, and the other machine learning algorithms are next best, 

most often the recursive partitioning algorithm.  For pedestrian counts, the random forest and 

negative binomial approaches are similar in error for daily and annual error while the negative 

binomial outperforms the random forest significantly in the monthly aggregation.   

The error shown in the figure above shows the worse outcomes, or at least the imputation 

scenario with the most error 95% of the time, but imputation results can differ depending on 

amount of data used in the model training and the particular days or months used in the training.  

Generally, the more data used in the training, the better the imputation estimation and it 

highlighted in Figure 7.4. This figure shows the 95th percentile error and the median error by 

annual estimation for each of the scenarios of months used in training data.  In the left panel the 

bicycle counts tests are summarized and related error summaries are shown while the pedestrian 

count tests are in the right panel. 

  

Figure 7.4: Imputation results for all machine learning algorithms – 95th percentile and 

median error summary by months used to train model 
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Table 7.2 below shows the results from the chart for the negative binomial and random forest 

models (since they were consistently the best performing overall) in table format so readers can 

examine the information in more detail. It should be noted that some results are not shown in the 

chart since a small number of negative binomial model tests had such high error that the chart 

was unreadable.  For instance the 95th percentile error results for one month of data for the 

negative binomial model was over 26,000 percent!   Of the 442,152 tests done for the 21 count 

locations, over five imputation techniques, across the 4,096 monthly holdout scenarios, 82 

estimates for the annual aggregation APE was over 500% so this seems to be a rare outcome 

overall.  Also, all of these incredible outliers were from the negative binomial regression model 

and usually resulted from training the model on a single month, usually December, but in some 

cases, using two months, usually, some two month combination of January, November, and 

December.  It appears that even though the negative binomial regression model does pretty well 

overall (Figure 7.3) it struggles when data little data informs the training data (i.e. one or two 

months of winter data feeding the model).   

Table 7.2: Imputation Experiment Results by Number of Months Used to Train Model 

Overall, in either of the models shown in Table 7.2, given at least nine months of training data or 

more, the annual counts can be estimated within 8 percent in almost any combination of training 

months.  In 50% of training tests (median error) as little as three months of data can be used to 

impute missing data and arrive within 7% or better of the actual annual total for the random 

forest and 10% or better with the negative binomial regression model.  These results should lend 

significant confidence in either of these approaches for estimating annual total counts for bicycle 

or pedestrian traffic volume.   

Number of 

Months Used 

in Training 

Bicycle  Pedestrian 

Negative 

Binomial 

Random Forest Negative 

Binomial 

Random Forest 

95th 

Pct.  

Media

n 

95th 

Pct.  

Media

n 

95th 

Pct.  

Media

n 

95th 

Pct.  

Media

n 

1 26,288

% 

38% 84% 34% 244% 18% 68% 20% 

2 131% 14% 53% 11% 53% 9% 40% 10% 

3 50% 10% 34% 7% 28% 6% 27% 7% 

4 35% 7% 23% 5% 19% 5% 20% 6% 

5 28% 5% 18% 4% 14% 4% 17% 4% 

6 22% 4% 15% 3% 11% 3% 14% 4% 

7 18% 3% 12% 2% 9% 2% 12% 3% 

8 15% 3% 10% 2% 7% 2% 10% 3% 

9 12% 2% 8% 1% 6% 2% 8% 2% 

10 9% 2% 6% 1% 4% 1% 6% 2% 

11 6% 1% 4% 1% 3% 1% 4% 1% 
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7.4 IMPUTATION EXPERIMENT DIAGNOSTICS 

The above results are presented to demonstrate the prediction power of each of the imputation 

procedures.  However, it’s necessary to unpack some of the underlying modeling procedures to 

understand more about each imputation procedure works.  Information about the estimation 

results from the negative binomial regression models will be shared and then a few diagnostic 

elements from the machine learning algorithms will follow.   

7.4.1 Negative Binomial Regression Model Diagnostics 

As noted above, covariates for each of the regression model are selected based on their predictive 

power using a 10-fold cross validation procedure.  This process selects daily covariates most 

useful in predicting daily nonmotorized traffic counts.  This results in different covariates being 

used in different models.  Figure 7.5 below summarizes the variable used in each location for 

both the bicycle and pedestrian models.  Max daily temperature and the weekend variable are the 

most common covariates used, followed by snow fall, daily precipitation and minutes of daylight 

for both user types.   

 

Figure 7.5: Variables used in negative binomial regression imputation procedures 



 

42 

The model coefficients from the holdout experiment offer useful information as to why in 

scenarios with fewer months used in the model training, predictions are poorer than in months 

with more data.  Figure 7.6 shows the standardized beta-coefficients of all 4,096 tests charted for 

each of the variables used in the specification for a single location (Millrace Path) in order to 

highlight how the coefficients converge as more data is used in the training of the model.  

Assuming the coefficients in the tests with more data (Months Used equals 9-11 months) are 

closer to the real values, it’s easy to see why the tests only one to three months perform so poorly 

since their model coefficients are so much different.   

 

Figure 7.6: Example of negative binomial model coefficients perturbation  
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7.4.2 Machine Learning Algorithm Diagnostics 

Machine learning algorithms have fewer measures to help users understand how the model is 

working but information about variable importance can be a helpful guide to understand how the 

model is working.  The variable importance measure for tree based learning algorithms 

essentially measures the usefulness of each feature in the construction of the trees or more 

simply the number of times a features is used to make split in a tree at a node.  For illustrative 

purposes, an example decision tree is presented below for a single location in the study area in 

Figure 7.7.  The tree shows how the recursive partitioning tree determines splitting criteria 

including features and feature values.  For example, starting at node one (denoted by the value at 

the top of the node) where all 357 observations in this dataset are present (n = 357, mean value = 

37), the data is split by the TMAX (max daily temperature) variable based on whether the counts 

were taken on a day with less than 63 degrees (F) or more than 63 degrees.  If the max daily 

temperature is less than 63 degrees the decision tree moves left to node two (n = 176, mean value 

= 20) where temperature is used to split the data further, this time at 53 degrees (node 5, n = 74, 

mean value = 28).  If the temperature is more than 53 degrees the decision tree uses another 

feature, a dummy variable for weekday or weekend, to make a splitting decision.  If the counts 

were taken on a weekend, the branch moves left (to node 10, n = 26, mean = 18) or if the count 

was on a weekday branch moves right (to node 11, n = 48, mean = 33).   

 

Figure 7.7: Example decision tree  

From this description it’s clear that TMAX (max daily temperature) and Is_Weekday (dummy for 

weekend or weekday) are important variables used for splitting data at nodes.  These outcomes 

can now be quantified in the chart below in Figure 7.8 showing the relative importance of each 
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variable highlighting that max daily temperature is the most important variable in determining 

daily traffic counts for bikes, followed by minutes of daylight, and weekday dummy variable, 

precipitation (PRCP), and a dummy for if the count is on a federal holiday.  Inches of snow on 

the day of the count was not important, likely due to low number of days with snow and also the 

impact of snow might be dealt with using the temperature and precipitation variables.  

 

Figure 7.8: Example of feature/variable importance for single recursive partition tree 

Now that an explanation of the variable importance measures has been described, these measures 

will be presented for the working models from the data imputation experiment.  Because there 

are models estimated for multiple locations, the Figure 7.9 summarizes these using relative 

representations based on color.  The variable importance summary is broken out by bicycle (top 

panel) and pedestrian (bottom panel) traffic counts.  This figure shows how max daily 

temperature is important for both bicycle and pedestrian traffic for all sites, albeit less so for the 

pedestrian Newport Avenue location.   Daily precipitation and minutes of daylight are also 

important variables for most location specific models.   

Using variable importance we can check whether our models are working well by assessing 

whether the decision tree splitting variables align with the documented research and theoretical 

foundation.  Based on the results below and what has previously been documented as daily 

conditions affecting daily nonmotorized traffic counts, the models seem to be working as 

expected.   
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Figure 7.9: Variable importance for random forest models by count location 

7.5 IMPUTATION EXPERIMENT DISCUSSION 

Accuracy of the prediction is an important element when deciding on an imputation procedure 

but it is not the only thing to consider.  Ease of implementation and acceptance by practitioners 

are other important considerations.  The difference in the negative binomial statistical model and 

random forest machine learning algorithm along these two elements will now be discussed along 

with an examination of the accuracy results for daily, monthly and annual estimates.   

The regression model uses weather, day of the week, and minutes of daylight as covariates to 

predict the traffic counts for a missing day of data.  It’s important to determine the best variables, 

for instance, if snow fall should be used in a city with little snow fall, may not be obvious and so 
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some testing needs to be done to determine which covariates to use in the regression 

specification.  Prior to the execution of the tests conducted in the experiments above, a k-fold 

(k=10) cross validation procedure was performed to determine which of the possible daily 

covariates were best at predicting daily counts in order to specify the final model used in the 

experiments.  This required some programming in R to properly set up and execute but was 

generally straight forward.  The algorithms for the machine learning algorithm on the other hand, 

make the implementation of these imputation procedures a little simpler, doing the cross 

validation internally (within the package functions) and the nature of machine learning means 

model specification is not necessary in the traditional way.  Computation time for the regression 

model, even considering the cross validation for covariate selection, took just a few hours while 

the machine learning test training took about four days to do all of the tests for each of the 

different algorithms, even when parallel processing was utilized which cut each test’s run time 

by about 60% when utilizing 7 processors at once on a four core system with eight 3.4 Ghz 

setup.  For testing accuracy like what was done in the experiment above, this is not much of an 

issue though since the data is not needed in real time for operations or some similar function.  

Both of these two approaches require some technical skills that might not be in high supply at 

transportation agencies and so may be difficult to implement.  This is likely why simplistic 

historic and factoring methodologies persist.  Factoring can work if the data exists but as will be 

shown in the next section, oftentimes sensors fails and there is not a full year of data to use in the 

development of daily factors so these statistical and machine learning methods offer a more 

flexible, albeit more complicated, approach to traffic data imputation.   

It should be noted that the imputation experiment results might overstate potential error when 

actually deploying an algorithm since in practice.  Since the experiment only looked at a single 

year in isolation, if any given month was missing the pattern in that month was also gone but in 

practice if a given month is missing from one year the likelihood is high that that month is 

present for the preceding or following year.  This would likely improve the machine learning 

performance in terms of error.   

7.6 IMPUTATION APPLICATION 

With a tested approach documented above, this section will now summarize the application of 

the imputation process for count sites in the Bend MPO study area.  A description of the sites 

and the missing data will be described, followed by the results produced by the imputation 

procedure and a short discussion of the potential error in these annual estimates.  The random 

forest machine learning algorithm was selected due to its low error and ease of implementation. 

7.6.1 Missing Data Description 

Figure 7.10 below shows the number of days missing for the permanent count stations that had 

data lost due to hardware issues or data filtered due to the error check process discussed in an 

earlier section.  Nearly 80% of the daily counts imputed in the imputation process were 

consecutive zeroes likely due to equipment problems, with another 16% due to the values falling 

outside the rolling mean error boundaries.  The maximum number of days missing is 179 at 

location 267B with the average number of days missing at 54 days and a median of 50 days.   



 

47 

 

Figure 7.10: Days of missing data by sub location Id  

7.6.2 Imputation Application Results 

The results of filling in missing data are shown below in Figure 7.11 and show the annual 

average daily traffic from the combined observed and imputed daily traffic counts for the years 

where data was collected.   
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Figure 7.11: AADT estimates from imputation 

The figure shows how the imputed AADT are mostly stable across years and also shows error 

bars for imputed AADTs where more than at least 15% of the of the daily records for any given 

month were missing.  The information for the error bars comes from the imputation experiments 

described above.  For instance, application site 258F (for bicycle) site used data from months 

January, February, July, August, and September, to impute the missing data so information from 

the imputation experiment above can be used to assess the potential error by using the 95th 

percentile error APE.  This is appended as a lower and upper bound error to give some 

confidence intervals.  For sites without error bars, the missing data was sparse enough (less than 

15% for any one month) that it did not align with results from the imputation experiment so were 

not appended.  In these cases the point estimates should be pretty close to actual considering the 

missing data is pretty small. 

7.7 IMPUTATION DISCUSSION 

The above section summarizes the relevant literature on traffic counts data imputation, performs 

experiments to test a number of imputation procedures, and then applies the selected random 

forest machine learning imputation procedure.  Results for bicycle counts from the imputation 

experiment show that results for annual estimates of traffic counts can be quite good to the 
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actual, with 95th percentile error of just 18% when missing up to seven months of data and as 

little as 4% if using the proper combination of months in the training set.  Results are similar for 

pedestrian imputation experiment results.  The machine learning algorithms tested in the 

experiment and deployed in the application are simply implemented if users have working 

knowledge of the R statistical software environment that is free for any agencies to use.  Results 

of the random forest algorithm on data in the study region appear internally consistent (from year 

to year) with assigned confidence intervals from the experiment results showing these results 

fluctuate within a reasonable amount each year.  Another useful application of the algorithm 

might be to estimate counts using shorter term equipment deployments.  As can be seen in the 

2017 results above, where the sensors were actually not installed until mid-year, a full year of 

data can be estimated in the absence of hardware.  Agencies should feel comfortable with this 

approach to traffic data imputation for bicycle and pedestrian traffic. 
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8.0 DATA FUSION MODELING 

The above sections documented the processes involved in collecting, cleaning, and preparing 

annual estimates of nonmotorized traffic volumes.  There are many ultimate uses of these counts 

data on their own but a focus this research effort is to employ the annual counts in statistical and 

machine learning modeling in order to mine the relationships that the traffic counts have with 

other features in the study area to then estimate vehicle, bicycle and pedestrian volume across the 

entire network, even in places where no counts have been taken.  This section will document the 

procedures developed to estimate vehicle, bicycle and pedestrian volumes in the Bend MPO 

study area.  Models will be estimated using statistical models including negative binomial and 

Poisson regression specifications in addition to the model estimation using two machine learning 

techniques including random forest and extreme gradient boosting (XgBoost).  

For each of the models, the estimated annual average daily traffic will be predicted based on 

features or inputs available across the network allowing for application of the model estimation 

for the whole system.  These features include network characteristics such as functional 

classification, speed limit, and network centrality as well as access to jobs and population.  For 

the bicycle and pedestrian models, additional features will be tested that aim to improve model 

performance and include samples of ‘probe’ data from a smart phone app that tracks bicycle 

rider trips and transit data.  The data sources and processing procedure for these features will be 

described in the sections below.  

8.1  VEHICLE TRAFFIC DATA FUSION MODELS 

This section will document the development and application of a data fusion model for vehicle 

traffic in the bend MPO study area.  There are two primary objectives in developing vehicle 

traffic models even though this research is directed at nonmotorized travel estimation techniques.   

 Objective 1 – Demonstrate accuracy of data fusion models compared to establish 

reporting protocols  

The first objective is to demonstrate the use of parametric and machine learning 

methods for the purposes of network wide volume estimation.  Because vehicle 

counts data and the associated collection methods are more established and more data 

exists to test models, some confidence can be established as to how these methods 

work with varying amounts of data.  Since vehicle counts and the vehicle miles 

traveled metrics they inform are standard elements of ODOT’s annual reporting to the 

FHWA, a comparison dataset for vehicle miles traveled estimates is available for 

validation of the final data fusion models.  The results will give a sense as to how 

accurate the data fusion technique is compared to traditional approaches using the 

Highway Performance and Monitoring (HPMS) procedures with varying amounts of 

data. Additional test results will be presented for select model specifications where 

only a subset of vehicle counts data are used to train the model with the object of 

showing aggregate VMT stability even when less data is available.  
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 Objective 2 – Employ estimates of network wide vehicle traffic counts in bicycle and 

pedestrian models 

The second objective of this section is to develop vehicle AADT measures for the 

entire study area network to use in the bicycle and pedestrian models.  Nonmotorized 

traffic volumes are sensitive to the presence of vehicle volumes since they make users 

feel less safe and in fact do lead to higher risk for nonmotorized users (CITATION).  

Therefore having motorized volumes for the entire network will be important 

information in the nonmotorized models developed in the other sections of this report.  

The objectives of the two sections on nonmotorized traffic data fusion modeling is to 

develop a working prototype that Bend MPO could use for travel monitoring and 

planning purposes including in safety analyses featured as a later chapter in this 

report.   

8.2 DATA DESCRIPTION FOR VEHICLE TRAFFIC FUSION MODELS 

The data fusion models utilize a number of data sets to train and apply models including annual 

average daily traffic (AADT) estimates of traffic counts, network attributes, access to jobs and 

population and a measure of network centrality. Figure 8.1 below depicts the different network 

features that come together in the data fusion models to estimate the network wide AADT for 

vehicles.  Each of these data are explained in more detail below 
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Figure 8.1: Vehicle AADT data fusion model schema 

Table 8.1 below summarizes the AADT data used as the response variable in the data fusion 

models.  The data represents two years of data, with a number of summary statistics available in 

the table by functional classification.  As can be observed from the table, vehicle traffic volumes 

are generally stable with minor increases in most functional classifications.  Also, most of the 

counts are on higher functional classification roads such as principle arterials with some counts 

taken on local roads.  The counts taken on local roads are usually done on network links with 

higher volumes than most local facilities.  These sites are selected because they are importance 

connector roads to intermodal freight facilities or some other important regional destination.  

That being said, these volumes are still lower than most of the other functional classifications.   
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Table 8.1: Vehicle Data AADT Summary 

Network data attributes used to both train and apply the model are derived from a data set 

created for this research project.  The network data set is a fully routable graph and has a number 

of attributes including functional classification and posted speed that are useful as prediction 

features but also useful to help generate the accessibility to jobs and population data described 

below.  Table 8.2 below summarizes the miles of network by functional classification and posted 

speed limit.  A significant portion of the street network is represented by local streets even 

though fewer traffic counts are collected on those types of facilities since counts are typically 

very low.  Standard practice for agencies is to assume a static value for local streets and apply 

that value to all streets of local functional classification, typically a value between 500 to 1,000 

AADT per day.   

Table 8.2: Network Miles by Functional Classification and Posted Speed  

Figure 8.2 shows the count site locations and layout of the functional classification system across 

the study are in Bend MPO.  As described in the table above, many of the count sites are on 

higher functional classification roads with many concentrated along Highway 97 corridor and 

supporting arterials.  For the purposes of reporting, the highways in the study region, though 

controlled access in many parts, is classified as a principal arterial - other.   

Functional 

Classification 

Year Vehicle AADT Summary Data 

Minimum Mean Median Std. 

Dev. 

Max Observations 

Local 2017 133 719 519 893 3822 15 

2018 123 773 559 897 3957 16 

Minor 

Collector 

2017 250 670 560 484 1200 3 

2018 240 673 580 487 1200 3 

Major 

Collector 

2017 380 4173 3500 30147 9600 50 

2018 360 4077 3500 3048 10000 49 

Minor 

Arterial 

2017 430 9262 8900 4184 19700 101 

2018 540 9256 9050 4230 21800 100 

Principal 

Arterial - 

Other 

2017 40 16639 15800 14107 54000 87 

2018 40 16856 16300 14262 55100 88 

Functional 

Classification 

Posted Speed 

20 25 30 35 40 45 50 55 

Local 0.0 423.0 0.0 0.0 0.0 0.0 0.0 0.0 

Collector 1.6 16.6 12.2 10.2 6.2 6.2 0.0 0.0 

Minor Arterial 1.5 10.0 3.9 26.5 7.6 10.7 0.6 0.0 

Principal Arterial - 

Other 

0.0 5.7 0.0 6.6 1.0 26.0 0.0 3.2 
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Figure 8.2: Count site location and functional classification for Bend MPO study area 

Accessibility data are created by using analytic methods that combine the functionality of a 

routable network with data on population and employment location at a zonal level, either 

transportation analysis zone or Census block.  Each link in the network is assigned accessibility 

to population and employment measures based on the number of each opportunities that can be 

reached by either travel time or shortest path distance.  Accessibility measures are created by 

first calculating the drive time from each network node to the network node nearest the centroid 

of the Census block or transportation analysis zone (TAZ) using the igraph library (Csardi et al. 

2006) within the R statistical computing environment.  Link cost is either the travel time to 
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traverse the link based on the link length (for shortest distance) or the length and posted speed 

limit for driving travel time.  The number of opportunities (either jobs or people) is calculated for 

various shortest path and drive time thresholds and then summing the number of people and jobs 

within these different thresholds.  Different thresholds are used because different trip purposes 

have different trip lengths and these thresholds aim to simulate that heterogeneity in trip making 

decisions.  However, because the travel network is relatively small most jobs and population are 

reachable within a low travel time and distance threshold. Figure 8.3 below shows the results for 

total jobs accessible within a 10 minute drive time from all given network links.  The core area 

of the region, downtown Bend, has significantly higher access to jobs due to its proximity to jobs 

concentrated in this area.  Figure 8.4 below shows the results of link level accessibility to 

population for the study region.  Since population density is higher near the downtown of the 

study region the accessibility to these people from the links near these inner areas is also higher 

than the outlying areas of the region with lower population density.   

 

Figure 8.3: Total jobs accessible within 10 minute drive 
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Figure 8.4: Total population accessible within 10 minute drive 

The above figures show just two of the accessibility measures used in the model training but 

many more were created and utilized.  Since the employment accessibility data is based on 

LEHD, there are nearly 40 types of employment 1 with many job types (manufacturing, 

healthcare, retail) as well as worker types (worker sex, race, and educational attainment) 

represented.  For the population accessibility measures, total population, households, and park 

acres, are also included.  These opportunity measures are also computed at multiple thresholds 

(as mentioned earlier) resulting in hundreds of features usable in the machine learning 

algorithms.   

The next measure used for the vehicle data fusion model are measures of network centrality.  In 

graph or network analysis, centrality is a measure of importance of nodes and their respective 

edges (links) to one another.  This type of analysis is very common in understanding social 

media data, commerce and logistics but is also key to understanding traffic flow.  High measures 

of centrality in transportation networks are nodes and links that are commonly used to traverse 

the network, such as one of just a few bridges over a river or high speed facilities like highways 

                                                
1 LEHD information - https://lehd.ces.census.gov/data/lodes/LODES7/LODESTechDoc7.4.pdf 

https://lehd.ces.census.gov/data/lodes/LODES7/LODESTechDoc7.4.pdf
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and arterials that provide quick traversal across a network.  This research employed edge 

betweenness as is define as the number of the shortest paths, or in this case the lowest cost paths 

that go through a link in a network (Zhang 2013).  This measure of centrality was calculated 

using the R statistical computing software package igraph’s edge_betweenness function which 

calculates the shortest path from each node to all other nodes in the network and returns the 

count of trips on the traversed links.  For this calculation, weights were assigned to the links to 

represent travel time by multiplying the link distance by the posted travel speed.  Figure 8.5 

below shows the results of the least cost path network centrality measure used in the vehicle data 

fusion model.  As can be seen in the figure, higher measures of centrality are assigned to the 

Highway 97 and Highway 20 corridors.  The next most important links are the principal arterials 

which also have relatively high measures of centrality.  Local streets have very low measures of 

centrality because the frequency of their use is low when traversing the network from a given 

origin node.   

 

Figure 8.5: Network centrality using least cost path 
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8.3 VEHICLE TRAFFIC DATA FUSION MODEL RESULTS 

The results of the vehicle data fusion models will be presented in four sections below.  The first 

section will describe and summarize the machine learning based data fusion models including 

the features used and the cross-validation results.  The second section will describe and 

summarize the parametric based data fusion models including the final model covariates and 

results of the cross validation results.  For the machine learning and regression approaches root 

mean squared error (RMSE) and r-squared values are used to measure model performance.  The 

third section will compare applied machine learning and regression models to known estimates 

of vehicle miles traveled for the study area from the Highway Performance Monitoring System 

(HPMS).  The third section will also show model results from subset models, models in which 

only a subset of the AADT data are used to train the model with an objective of showing 

aggregate VMT estimate stability even when less data is available.  The last section will offer a 

discussion of the model approaches and discuss the tradeoffs and opportunities for each 

approach.   

8.3.1 Machine Learning Based Vehicle Traffic Data Fusion Model Cross-

Validation Results 

This section summarizes model features and cross-validation results of machine learning based 

data fusion models.  Cross validation was done through both an internal and external cross 

validation process.  The results presented below are based on two machine learning algorithms 

including extreme gradient boosting (XgBoost) and random forest.  Two sets of cross validation 

are performed, one that is characterized as internal that uses random partitions in a 10-fold cross 

validation and is done as a part of the model training process within the caret package.  The 

second cross validation process, characterized as external, is performed on a select set of model 

specifications with high accuracy from the first validation and uses a stratified partition to do 

another 10-fold cross-validation.  The internal cross validation uses 10 folds and was performed 

twice.  The internal cross validation executes rather quickly for each specification taking about 

12 minutes to run using seven cores running in parallel on a four core system with eight total 

processors each with 3.4 Ghz processor speed.  Multiple model specifications are tested in the 

internal validation step using two type of algorithms (XgBoost and Random Forest) with a set of 

selected model specification being put forward to the external cross validation process.   

A key feature of machine learning algorithms are the ability to change input parameters specific 

to the machine learning algorithm.  The purpose of tuning parameters is to find the optimal trade-

off between model complexity and the training set size.  For this research parameters are held 

constant for all the different cross validation tests with ranges of inputs described below Table 

8.3.  These parameters are summarized in the Appendix for select models.   
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Table 8.3: Hyper Parameter Description and Input Range 

Parameter Package 

Parameter 

Name 

Values 

Used 

Algorithm Description 

Boosting 

Rounds 

nrounds 50, 75, 

100 

XgBoost Corresponds to the number of boosting rounds or 

trees to build. Its optimal value highly depends on 

the other parameters, and thus it should be re-tuned 

each time you update a parameter. You could do 

this by tuning it together with all parameters in a 

grid-search, but it requires a lot of computational 

effort. 

Learning Rate eta 0.05, 

0.075, 

0.1 

XgBoost Step size shrinkage used in update to prevent 

overfitting. After each boosting step, we can 

directly get the weights of new features, and eta 

shrinks the feature weights to make the boosting 

process more conservative.   

Maximum 

Depth 

max_depth 6 

through 

8 

XgBoost Maximum depth of a tree. Increasing this value will 

make the model more complex and more likely to 

overfit. 

Minimum 

Child Weight 

min_child 

weights 

2.0, 

2.25, 2.5 

XgBoost Defines the minimum sum of weights of all 

observations required in a child. Used to control 

over-fitting. Higher values prevent a model from 

learning relations which might be highly specific to 

the particular sample selected for a tree. Too high 

values can lead to under-fitting hence, it should be 

turned using CV.  

Subsample 

Ratio of 

Columns 

Colsample_ 

bytree 

0.36, 

0.4, 0.5 

XgBoost Subsample ratio of columns when constructing 

each tree. Subsampling occurs once for every tree 

constructed.  

Gamma gamma 0 XgBoost A node is split only when the resulting split gives a 

positive reduction in the loss function. Gamma 

specifies the minimum loss reduction required to 

make a split. Higher values make the algorithm 

more conservative. The values can vary depending 

on the loss function and should be tuned.  

Subsample 

ratio 

subsample 1 XgBoost Subsample ratio of the training stances. Setting it to 

0.5 means that XGBoost would randomly sample 

half of the training data prior to growing trees, and 

this will prevent overfitting. Subsampling will 

occur once in every boosting iteration.  

Split Variable 

Count 

mtry 2 

through 

6 

Random 

Forest 

Number of drawn candidate variables in each split 

Trees to Grow ntree 2000 Random 

Forest 

Number of branches will grow after each time split.  
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Many different kinds of training features were tested but selected scenarios are described in 

Table 8.4 below.  The primary difference in the feature scenarios is that the features used to 

describe the functional classification differ.  In the Base Features + Is Ramp scenario the 

functional classifications include both local and federal classifications which differ slightly with 

federal classifications having more classes, including a split for collector classes into a minor and 

major classification.  In both scenarios there is a dummy variable called Is Ramp included to 

distinguish highway on and off ramps separately from the principle arterials they are classified as 

in the classification schemes (both local and federal).   

Table 8.4: Vehicle Model Feature Scenario Description 

Model performance is based on RMSE and r-squared values while the number of features used in 

the model is also presented.  The internal validation results are a product of the initial model 

training using the caret package in R and uses a random partitioning process, using 10 folds and 

performed two times.  The results from the internal cross validation tests show that the XgBoost 

algorithm significantly out performs the random forest algorithm with a minimum r-squared 

value of 54% versus a 30% in the random forest.  The maximum r-squared value for XgBoost is 

73% while the maximum for random forest was only 43 percent.  The number of features used in 

the XgBoost is generally fewer than the random forest.   

Table 8.5: Internal Cross Validation Results for Vehicle Model 

One way to diagnose how the machine learning algorithms are using the input features is to use a 

measure of variable importance.  In Table 8.5 the number of features that were ultimately found 

to be useful in predicting AADT were summarized for each specification and algorithm.  Of all 

of the features used in each algorithm, the top 10 most important are displayed in Figure 8.6.  

Feature Specification Description 

Federal Fc Accessibility calculated using least cost paths based 

on travel time; Auto Centrality, Local & State 

Functional Classification 

Local Fc Accessibility calculated using least cost paths based 

on travel time; Auto Centrality, Local  Functional 

Classification only with minor/major collector  

Algorithm Specification RMSE R-

squared 

Algorithm Feature 

Count 

Year 

Federal Fc 7637 43% Random Forest 352 2017 

Federal Fc 8160 42% Random Forest 352 2018 

Local Fc 8303 30% Random Forest 338 2017 

Local Fc 8752 33% Random Forest 338 2018 

Federal Fc 5025 73% XgBoost 163 2017 

Federal Fc 5529 70% XgBoost 143 2018 

Local Fc 6631 54% XgBoost 156 2017 

Local Fc 6806 58% XgBoost 137 2018 



 

62 

This chart summarizes the relative number of times a feature is used in the splitting of trees.  The 

top panel shows both model specifications (Federal Fc and Local Fc) for the random forest 

algorithm and the bottom panel shows variable importance summary for the XgBoost algorithm.  

The random forest results show that speed, shortest path and auto centrality, street classes with 

principle arterial are some of the more important features in the decision tree splitting.  Access to 

employment features that were relatively importance include access to retail trade, and native 

American and Hispanic workers as well as workers ages 30 to 54 and 55 and older all within 5 

minute drive time from the network link in which the count location resides.   

 

Figure 8.6: Variable importance for select vehicle data fusion models 

For the XgBoost algorithm some of the same features were of most relative importance such as 

speed and auto centrality but also includes measures of bike centrality.  Streets classified as 

principal arterials were also shown to be important.  Access to workers variables differed 

compared to the random forest algorithm and include access to educational, information, retail 

trade, and construction jobs.   

The variable used in the machine learning algorithms were selected based on a theoretical 

relationship to vehicle traffic counts and the variables highlighted in the variable importance 

charts make intuitive sense for being important in the prediction of vehicle counts.  Centrality 

measures would be expected to be important since high centrality are places on the network with 

many important connections to other parts of the network.  Any measure of network 

classification, like principal arterial, would also be expected considering those designations are 

in fact based on the expected volume at that location.  And worker access being important is not 

surprising considering vehicle traffic is a proxy for economic activity, which requires workers.  It 

should be noted that the variables displayed and discussed in the above section only include the 
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top 10 variables for each algorithm and specification but many others are used in these machine 

learning approaches.  In the random forest models the number of features is up to 352 and 163 

for the XgBoost algorithm.   

External validation tests are performed using both a 10-fold and a leave-one-out (LOO) process.  

The purpose of the external validation tests are twofold with the first motivation looking to 

understand in more detail the prediction error by volume bin and functional classification which 

is not possible to extract from the internal cross validation results.  The second motivation is to 

try and determine how much the model results might be biased by spatial autocorrelation making 

earlier test results somewhat biased because sites used in training may be near tests where the 

model is applied.  To control for this, the LOO cross validation only uses sites in the training that 

are at least 1,000 feet from the test site.   

Results from the external 10-fold cross validation analysis are presented below in Figure 8.7 and 

shows the mean absolute percent error by volume bin for the two model specifications and 

algorithm types.  These results demonstrate that XgBoost model works better than the random 

forest for most volume bin predictions.  Additionally, the Federal Fc specification seem to 

perform better than the Local Fc model specification, likely due to the additional categories 

available in the federal functional classification scheme.  Generally, for all model specifications 

and algorithm types, the error diminishes as the volume increases.  Estimating volumes at low 

volume of less than 1,000 AADT results in a lot of error in percentage terms, likely due to a low 

number of observations for roads with low volume in the training data.   

 

Figure 8.7: External 10-fold cross validation for vehicle models 
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Because the XgBoost algorithm worked best based on the internal validation and the 10-fold 

external validation the LOO cross validation process only tested this approach.  The Local Fc 

specification was selected for the LOO process due to its better performance in matching HPMS 

data total shown in the next section.  Table 8.10 summarizes the results of the LOO cross 

validation.  Generally the error decreases with increasing model volume with the model 

struggling to predict well the lowest volume bin categories.   

Table 8.6: External Leave-One-Out Cross Validation Results for Vehicle Model 

Figure 8.8 shows the correlation between the observed AADT and the estimated AADT from the 

LOO tests showing the general relationship and the trend toward over and under predicting.  

Higher volume roads look to be under estimated while the mid volume sites look to be about 

split.  It would not be surprising to have the higher volume roads under predict considering this 

model does not account for external traffic other than in the response feature (AADT).  For 

instance there are not training features that account for access to population and jobs outside the 

study area.   

Algorithm Volume Bin Absolute Percent 

Error  

Number of 

Sites 

Mean Median 

XgBoost 1-1K 711% 547% 29 

1K-2K 245% 170% 13 

2K-5K 136% 109% 47 

5K-10K 46% 30% 78 

10K-20K 30% 28% 51 

20K-30K 28% 23% 15 

30K-40K 24% 26% 5 

40K-55K 30% 29% 11 

All Sites 145% 39% 249 
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Figure 8.8: Observed and estimated AADT from LOO tests 

These results reveal that error generally decreases as the volume increases.  These results should 

be considered more rigorous compared to the 10-fold cross validation because only sites at least 

1,000 feet away from the test site are used to train the model used in prediction with an aim to 

alleviate issues of spatial autocorrelation.  Surprising when compared to the 10-fold cross 

validation results, the LOO results are slightly better in some cases.  Table 8.7 compares the 

results from these two validation approaches showing that in some cases the LOO results are 

slightly better but based on overall (All Sites) median error the two approaches are generally 

telling the same story that low volume roads remain difficult to predict and error diminishes as 

volume increases.   

Table 8.7: Comparison of 10-Fold and LOO Cross Validation Results 

Volume Bin Mean Absolute Percent Error  Median Absolute Percent Error  

10-Fold LOO 10-Fold LOO 

1-1K 1700% 711% 619% 547% 

1K-2K 154% 245% 128% 170% 

2K-5K 104% 136% 70% 109% 

5K-10K 44% 46% 31% 30% 

10K-20K 28% 30% 22% 28% 

20K-30K 32% 28% 29% 23% 

30K-40K 18% 24% 18% 26% 

40K-55K 31% 30% 27% 29% 

All Sites 254% 145% 40% 39% 



 

66 

8.3.2 Statistical Vehicle Traffic Data Fusion Model Cross-Validation Results 

This section will describe the development of statistical models to estimate vehicle AADT 

including an exploration of the individual effects of the covariates used in the final model.  Since 

the number of available covariates for estimating a statistical model for vehicle traffic are 

numerous it was necessary to use a testing procedure to determine the variables with the best 

model prediction accuracy.  This process uses 10-fold cross-validation to test the prediction 

accuracy of thousands of possible model specifications.  For the vehicle model 9,408 

specifications are tried based on a grid of all possible combinations of select variables including 

population access, total employment access, retail, health, and warehouse workers, intersection 

density, auto centrality and shortest path centrality.  All the accessibility measures use drive time 

network distance thresholds of 5-30 minutes with 5 minute increments.  All models are estimated 

using a negative binomial regression specification due the counts data featuring over dispersion 

where the dependent variable (vehicle AADT) variance is greater than the mean of the counts 

which is generally the case for traffic counts data.  The model is specified as linear-in-parameters 

with a log-link function: 

𝒀𝒊𝒅 ~ 𝑵𝒆𝒈𝑩𝒊𝒏𝒐𝒎(𝝁𝒊𝒅) 

(8-1) 

𝐥𝐨𝐠(𝛍𝐢𝐝) = 𝛃𝐢𝐗𝐢𝐝 

(8-2) 

Where: 

𝑌𝑖𝑑 = Average annual daily traffic (AADT) volume at site i 

𝜷𝒊 = Vector of parameters for count site i 

𝑿𝒊𝒅 = Vector of observed covariates for count site i  

A custom process was developed in R where for each year of vehicle counts available the data is 

partitioned into 10 folds using a stratified random sample ensuring functional classification 

designations are equally distributed among the folds.  A negative binomial regression model is 

estimated on each of the k-1 groups (training data) and then estimated on the k-9 (test data) and 

then compared to the observed data.  For each selection of variables three performance metrics 

are computed include RMSE, mean absolute percent error (MAPE) and adjusted r-squared.  

Based on these metrics models top performing models are selected for further examination.  For 

the vehicle models the final estimated parameters are presented in Table 8.10 for three select 

models.  Model results below present the estimated coefficient and the associated standard error 

and p-value for selected models with the highest r-squared, the lowest RMSE, and lowest MAPE 

for the two periods available including 2017 and 2018 data. 
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Table 8.8: Regression Results for Vehicle Model 

Coefficient Std. Error z value P-value Feature_Update Year Metric 

8.741E-04 0.0003 2.6276351 0.0086 Population_30 2017 Highest R 

Squared 9.700E-04 0.0004 2.603193 0.0092 Num_Intersections_15 

1.8315 0.2107 8.6922012 0.0000 Major Collector 

2.5670 0.1954 13.139571 0.0000 Minor Arterial 

-0.0130 0.5332 -0.02435 0.9806 Minor Collector 

3.1780 0.2028 15.672757 0.0000 Principal Arterial – Other 

-1.30279 0.1538 -6.6984048 0.0000 Is_RampTRUE 

7.501E-04 0.0003 2.2773467 0.0228 Population_30 2018 

1.247E-03 0.0004 3.3523657 0.0008 Num_Intersections_15 

1.7426 0.2038 8.5509856 0.0000 Major Collector 

2.5017 0.1877 13.330093 0.0000 Minor Arterial 

-0.0624 0.5243 -0.119005 0.9053 Minor Collector 

3.1341 0.1945 16.11221 0.0000 Principal Arterial – Other 

-1.0519 0.1522 -6.909997 0.0000 Is_RampTRUE 

-3.613E-05 2.40E-05 -1.507485 0.1317 Total number of jobs 15 Min. 2017 Lowest 

RMSE 9.332E-04 3.75E-04 2.4875365 0.0129 Population_30 

9.513E-04 0.0004 2.4672678 0.0136 Num_Intersections_15 

1.245E-07 2.39E-08 5.2207689 0.0000 Auto_Centrality 

1.6891 0.2027 8.3345421 0.0000 Major Collector 

2.3093 0.1942 11.892813 0.0000 Minor Arterial 

0.0734 0.5095 0.1440024 0.8855 Minor Collector 

2.8938 0.2040 14.185107 0.0000 Principal Arterial – Other 

-0.9837 0.1526 -6.447746 0.0000 Is_RampTRUE 

-3.522E-05 2.38E-05 -1.450019 0.1389 Total number of jobs 15 Min. 2018 

8.474E-04 0.0004 2.2815215 0.0225 Population_30 

1.087E-03 0.0004 2.8286788 0.0047 Num_Intersections_15 

1.250E-07 2.37E-08 5.2638814 0.0000 Auto_Centrality 

1.5959 0.1964 8.1277663 0.0000 Major Collector 

2.2314 0.1870 11.931655 0.0000 Minor Arterial 

8.747E-03 0.5009 0.0174619 0.9861 Minor Collector 
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2.8423 0.1963 14.481998 0.0000 Principal Arterial – Other 

-0.9677 0.1515 -6.387225 0.0000 Is_RampTRUE 

-5.552E-05 2.56E-05 -2.169612 0.0300 Total number of jobs 15 Min. 2017 Lowest 

MAPE 1.902E-03 0.0010 1.9532807 0.0508 Population_30 

-5.684E-03 0.0085 -0.670942 0.5023 Num_Intersections_30 

2.704E-04 0.0001 2.0563793 0.0397 Number of jobs in Retail Trade 10 Min. 

8.253E-05 4.69E-05 1.7608205 0.0783 Jobs in Health Care and Social Assistance 10 Min. 

-1.232E-03 0.0005 -2.408753 0.0160 Jobs in Transportation and Warehousing 10 Min. 

1.259E-07 2.41E-08 5.2277651 0.0000 Auto_Centrality 

1.6464 0.2018 8.1600414 0.0000 Major Collector 

2.2584 0.1943 11.623813 0.0000 Minor Arterial 

-0.0548 0.5039 -0.108825 0.9133 Minor Collector 

2.8102 0.2039 13.783979 0.0000 Principal Arterial – Other 

-0.9897 0.1515 -6.534239 0.0000 Is_RampTRUE 

-5.154E-05 2.55E-05 -2.022899 0.0431 Total number of jobs 15 Min. 2018 

1.358E-03 0.0010 1.4277074 0.1534 Population_30 

-2.080E-03 0.0082 -0.252644 0.8005 Num_Intersections_30 

3.294E-04 0.0001 2.4860195 0.0129 Jobs in Retail Trade 10 Min. 

5.305E-05 4.60E-05 1.1529826 0.2489 Jobs in Health Care and Social Assistance 10 min. 

-1.226E-03 0.0005 -2.40941 0.0160 Jobs in Transportation and Warehousing 10 Min. 

1.263E-07 2.40E-08 5.2576776 0.0000 Auto_Centrality 

1.5637 0.1964 7.9613189 0.0000 Major Collector 

2.1749 0.1878 11.579602 0.0000 Minor Arterial 

-0.1139 0.4965 -0.229366 0.8186 Minor Collector 

2.7408 0.1967 13.937237 0.0000 Principal Arterial – Other 

-0.9881 0.1510 -6.543958 0.0000 Is_RampTRUE 
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Most of the selected variables are significant within the 0.05 level of significance though some 

variables not commonly found to be significant at this level include categorical variable for 

minor collector and a few of the access to jobs variables.   The minor collectors are probably not 

significant because there are so few observations in the counts data on this functional 

classification.  Table 8.9 below summarizes the three select models error measures.  These error 

measures omitted the lowest volume bin (1-1K) since the error for sites with this range of 

volume were very high.   

Table 8.9: Model Diagnostic Information for Vehicle Regression Models 

The 10-fold holdout analysis results are further summarized by volume bin (this time including 

AADT within the 1-1K range) detailing the median APE for each of the models.  The model with 

the lowest median APE for all sites is the same model with the highest r-squared while the model 

with the lowest mean APE has the highest median APE of the three models compared.   

 

Figure 8.9: Top vehicle regression model median absolute percent error by volume bin 

Specification Performance 

Metric 

MAPE RMSE Adjusted 

R-Squared 

Population_30 + Num_Intersections_15 + 

AADT + Fc_Desc + Is_Ramp 

Highest R-

Squared 

63% 7821.1 0.422 

C000_15 + Population_30 + 

Num_Intersections_15 + Auto_Centrality + 

AADT + Fc_Desc + Is_Ramp 

Lowest 

RMSE 

56% 7746.3 0.419 

C000_15 + Population_30 + 

Num_Intersections_30 + Retail_10 + 

Warehouse_10 + Healthcare_10+ 

Lowest 

MAPE 

55% 7896.9 0.397 
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8.3.3 Vehicle Model Comparison with Federal Reporting Data (HPMS) 

This section will compare the results from a network wide application of the various data fusion 

models against aggregate VMT estimates from the Highway Performance Monitoring System 

(HPMS) to help gauge total vehicle activity estimation value.  The HPMS VMT data is 

submitted by state DOTs on an annual basis for each urban area within the state.  VMT estimates 

are submitted for each federal functional classification.  For the purposes of comparing data 

fusion model system wide VMT estimates, functional classifications will be reduced to just four 

categories, including collector (combine minor and major) minor arterial, and principal arterial 

(classified as principal arterial – other) and total VMT.  Local streets are used in the data fusion 

model training but because HPMS reporting for local streets assumes a blanket average for all 

streets the two outcomes are not comparable.  Additionally, even though models were trained for 

2017 and 2018, since the employment data used in the training was for 2017 only the estimate 

from that year will be compared.  

Figure 8.10 below shows the results from this comparison for two machine learning model 

specifications, Federal Fc and Local Fc demonstrating that in both models specifications, VMT 

can be estimated within a relatively low margin of error compared to the HPSM estimate.  The 

XgBoost algorithm appears to outperform the random forest in this comparison, with percent 

differences of -6%, 10%, and 2% and 2% for total VMT, principal arterial, minor arterials, and 

collectors respectively.  Even though the random forest model produces a total VMT estimate 

near 0% in both model specifications shown in the figure, it appears that the over- estimate of the 

collector and minor arterials helps to offset the under-estimate of the principle arterial, making 

the total VMT look pretty close to the HPMS estimate.  

  

Figure 8.10: Comparison of data fusion and HPMS VMT estimates 
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The next figure shows the top selected regression model results when compared to the HPMS 

VMT estimates and shows the three models perform similarly when compared to the HPMS 

figures.  Overall error is lowest for the model where the r-squared was highest but that is 

partially because the model over estimates in the principal and minor arterials and then under 

estimates in the collectors.  However the highest r-squared model does the best for the collector 

and principal arterial.   

 

Figure 8.11: Comparison of VMT estimates by regression specification 

The figure below compares the top model from the machine learning tests and the regression 

models, (XgBoost; Local Fc & Lowest MAPE respectively) to demonstrate how each performed 

when estimating network wide VMT.  Both models perform well and though the negative 

binomial model looks best when comparing the total VMT, as mentioned above this results looks 

like this partially because of over and under estimation within the other functional classifications.  

The machine learning model consistently over estimates within each functional classification 

performing better in the collector and minor arterial category but then does worse than the 

regression model for the total VMT on principal arterials. 
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Figure 8.12: Comparison of VMT estimates by estimation method 

The comparison above shows that the data fusion model technique works well to estimate the 

reported HPMS VMT when data from all 250 count stations are used in the model training.  In 

one sense the two estimates are not all that independent from one another.  In the HPMS estimate 

the vehicle count on a given roadway segment is multiplied by the distance to get the VMT for 

that segment.  In the data fusion approach however, network links, or edges, are not summarized 

to segments the way they are in the HPMS reporting.  In HPMS reporting roadway links are 

aggregated together to form reporting segments when the segment is believed to have the same 

volume along all of its component links.  In the data fusion model all links are assigned an 

AADT value in a more disaggregate fashion with links ending at each intersection in the 

network. Figure 8.13 shows an example on the study area network where a set of links (right) is 

aggregate to represent a segment (left) when doing HPMS reporting.  The point of describing 

these differences is to point out that the VMT comparisons are comparing an aggregate HPMS 

network represented by 312 segments with a much more disaggregate network of 13,458 links or 

edges in the data fusion model.   
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Figure 8.13: Comparison of HPMS segments and data fusion model links 

In addition to showing how the machine learning approach works for estimating network wide 

VMT when using all count sites available, roughly 250 sites with an AADT estimate.  However, 

for the bicycle and pedestrian models below the AADT data are more sparse and so it’s of 

interest to test the VMT estimate stability when only a subset of the 250 sites (roughly 83 sites) 

are used to train the model.  This scenario is more analogous to the count data circumstances the 

nonmotorized models will be working within.   

Figure 8.14 below shows the VMT estimates from the selected machine learning model, 

aggregated to functional classification, compared to the VMT estimates from HPMS.  The mean 

difference of all the subset models is also shown in the top panel.  The total VMT estimate error 

ranges from 3% in subset model 2 to -14% in subset model 3 though model 2 performance is 

impacted by an underestimate in principal arterials which then offsets the over estimates in minor 

arterial and collectors.  Similar to the comparison results using full data presented in  Figure 8.10 

above, the collector facilities have the most error with error ranging from -20% to -59 percent.  

Minor arterials error is lowest with -8%, 0% and 18% for subset models 1 through 3 respectively.  

These results indicate that for high level reporting, VMT estimates using subsets of the full data 

available are relatively stable.  These results should lend additional confidence to the results 

presented in the nonmotorized models below. 
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Figure 8.14: Subset model comparisons with HPMS 

8.3.4 Vehicle Traffic Data Fusion Model Discussion 

The above sections describe the data and modeling results from the estimation and application of 

the data fusion approach using machine learning and regression.  Results from three cross 

validation are presented for the machine learning model testing in order to present the 

performance of different model specifications and machine learning algorithms.  Generally, the 

results show that predicting accurately on lower volume roads is a challenge with error 

diminishing as volume increases.  Results from the 10-fold and LOO cross validation are 

comparable but the LOO is more rigorous because it removes near sites from the training data to 

ensure that cross validation results are not biased by having near neighbors in the estimation 

process.  Cross-validation using the regression approach are comparable with the machine 

learning for the overall median error.  But as demonstrated in Figure 8.15 below the machine 

learning model performs worse on roads with volumes of between 1K and 10K and then 40K+  

while the regression model performs between in the other volume categories.   
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Figure 8.15: Median error by volume bin by estimation type for vehicle data models 

These results would likely be better is some kind of probe data were used to help train the 

models but no probe data were available for this effort.  Future research should explore the use of 

probe data in improving these modeling approaches.  

Even though median error in the cross validation tests range from 16% to 619%, models applied 

for total VMT estimation reveal similar results with the selected model matching all functional 

classification summaries by 13% or less.  The high accuracy when compared to HPMS is the 

best evidence that these data fusion modeling approaches may work well for estimating bicycle 

miles and pedestrian miles traveled when deployed using nonmotorized specific data.  Evidence 

of the stability of these approaches is provided in Figure 8.14 where the results of three subset 

models, with roughly 80 count locations per model, are presented.  The results from each model 

compare relatively well with the VMT estimates from HPMS though collector streets continue to 

perform worse than desired.   

8.4 BICYCLE TRAFFIC DATA FUSION MODEL  

This section on bicycle data fusion modeling will be divided into two parts with the first part 

describing the data used in the machine learning and regression based data fusion modeling 

while the second part details the cross-validation tests and final application results of the two 

models.  The second part will feature a discussion of the trade-offs between the two data fusion 

modeling approaches. 
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8.5 DATA DESCRIPTION FOR BICYCLE TRAFFIC FUSION MODELS 

A number of features used in the bicycle data fusion model are described in the section below.  

Figure 8.16 shows the overall data fusion schema and presents key network features used to train 

the bicycle data fusion model.  As noted above in the vehicle model data description, this schema 

representation does not show all features used, for instance the access to jobs feature shown in 

the figure below actually has over 600 different versions when all worker industry, demographic, 

and access threshold combinations are computed.  

 

Figure 8.16: Bicycle data fusion model schema  

Table 8.10 below summarizes the AADT estimates for bicycle traffic by bicycle facility type for 

three years of data.  In addition to the summaries by year, summaries for rolling averages are 

also presented where 2017/2018 denoted the average of those years of data.  These summaries 

are constructed and presented below to take advantage of as much of the counts data as possible 

for data fusion modeling and are used in place of applying a growth factor.  Observations from 
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the table below show that bicycle traffic volumes on off-street paths are higher (on average) than 

streets with bike lanes which are generally higher than places with bike lanes.  The counts appear 

to be trending downwards for each facility type though the averaging of years helps to smooth 

those declines out reducing the influence of any single year.   

Table 8.10: Bicycle Traffic Count Summary 

Bicycle traffic have been collected at nearly 100 locations over the three years where data was 

actively collected.  Those locations are displayed below in Figure 8.17.  Many of the locations 

are on facilities where bicycle users would be expected to use and thus inserts a certain amount 

of bias where the model would likely be biased upward, especially at sites with very low or zero 

bicycle activity.  Later in the report an approach is proposed to handle the issue of having no 

zero counts in the observed bicycle traffic counts data. Another feature shown in Figure 8.17 is 

the bicycle specific network elements including the location of bicycle lanes and off-street paths.  

These will also be used in the model training process.  

Bicycle 

Facility 

Year Bicycle AADT Summary Data 

Minimum Mean Median Std. 

Dev. 

Max Observations 

No Facility 2017 10 42.4 21 55.1 140 5 

2018 15 53 25 51.9 170 11 

2019 2 24.2 23.5 13.5 57 20 

2017/2018 12 37.8 23.5 43.9 170 12 

2018/2019 2 24.5 19.5 31 170 26 

Bike lane 2017 9 64.3 55 45.6 151 13 

2018 3 43.4 30.5 42.8 187 38 

2019 2 36.8 27 39 183 33 

2017/2018 3 22.6 20 15.6 84 38 

2018/2019 3 23.4 20.5 17 82 48 

Off-street 

path 

2017 39 89 101 34.2 115 4 

2018 4 63.3 45.5 56.4 205 18 

2019 5 56.5 45 42.3 159 13 

2017/2018 4 57.5 43.6 54.3 205 18 

2018/2019 4 47.8 34.6 44.1 182 20 
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Figure 8.17: Bicycle Count Locations 

Table 8.11 below summarizes the number of miles of network in a cross classification table of 

bicycle facility and functional classification.  The region is currently implementing bicycle 

boulevards, or neighborhood greenways, but currently this designation will not be used in this 

research.  The two bicycle facilities are bicycle lanes either on one or both sides of the street and 

an off-street multi use path.  It should be noted that the two highways that intersect the study 

region, Highway 97 and Highway 20, are technically classified as principal arterial – other but 

are summarized below as highway to emphasize that these facilities have bike lanes, including 

on the on and off ramps.  No direct bicycle traffic count measurement of these facilities has been 

taken but activity would be expected to be limited due to the high speed, high vehicle volume 

conditions.   
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Table 8.11: Bicycle Network Summary 

Functional Classification Bicycle Facility Type   

No Bike 

Facility  

Bicycle 

Lanes 

Off-street 

path 

Total 

Highway* 0.0 23.5 0.0 23.5 

Principal Arterial - Other 1.6 14.8 0.0 16.5 

Minor Arterial 5.8 54.9 0.0 60.7 

Collector 20.6 32.3 0.0 52.9 

Local 419.7 3.4 0.0 423.0 

Off-street path 29.1 0.0 50.8 79.8 

Total  476.8 128.9 50.8 656.4 

*Officially a Principal Arterial - Other but functions very much like a controlled access 

freeway/highway 

As mentioned above the network wide training features differ from the vehicle models in many 

cases to better account for how people on bicycles use the system.  For instance, when 

calculating the network centrality and accessibility measures we do not assume the link costs are 

based on posted speed and so different links appear more important in the ‘bicycle’ centrality 

measure.  Similarly, access to jobs and population are more limited because people on bikes are 

not willing to travel as far as someone in a vehicle to access amenities.  Additionally, instead of 

using a drive time metric for measuring access a distance threshold is used.  Figure 8.18below 

displays one of the nonmotorized specific measures and shows the total jobs accessible within a 

0.5 mile bicycle ride.  Similar to some of the observations found above in the vehicle model 

inputs for total jobs access, employment centers can be seen in the figure with concentrations of 

jobs in the downtown core and north east where a large hospital resides.  It should be noted 

similar to the accessibility measures created for the vehicle data fusion model above, multiple 

measures of accessibility have been created for the bicycle models using all available job types 

in the LEHD data.  Additionally, accessibility was calculated using multiple distance thresholds 

of half-mile increments from 0.5 to 6.0 miles.  All of these features are tried in the machine 

learning training though not all end up being important.   
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Figure 8.18: Jobs accessible within a ½ mile bicycle ride 

Another unique feature in the bicycle data fusion models include counts of users of a bicycle 

specific smart phone app called Strava which allows people who ride bikes to download the app 

and use the GPS functionality of their phones to record their trip.  Data for this study is available 

for each year in which there are counts.  The data for 2018 are shown in Figure 8.19 below.  

These data are likely just a subset of total bicycle users and some research has shown that they 

do not reflect the general bicycle rider population.  These data may be thought of as probe data 

similar to data from vendors such as INRIX that many DOTs use to monitor traffic speeds.  

Based on a review of concentrations of Strava user trips are in the study area, there appears to be 

high level bicyclists that are less sensitive to streets with higher speed limits with lots of 

vehicles.  This observation is based on the relatively high number of Strava users on minor and 

major arterials.  Many of the local streets have low to zero counts of Strava rider counts, and a 

lot of the activity is concentrated in the western portion of the study region, perhaps due to that 

part of the regions access to mountain biking trails west of the urban area.   



 

81 

 

Figure 8.19: Strava rider counts 2018 

A bicycle specific measure of centrality has also been created for the bicycle data fusion model 

using the approach developed by Broach et al. (2009) that accounts for out of direction travel 

required to remain on streets with characteristics that make the average bicycle rider feel safe. A 

summary of the bicycle centrality measure is shown in Figure 8.20 below.  This measure of 

centrality emphasizes trips on bike lanes and off-street paths as opposed to just the shortest 

distance.  Vehicle volume is also taken into account which is why the bicycle centrality measure 

does not have Highway 97 as an important link like it is in the vehicle model data.   
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Figure 8.20: Bicycle specific network centrality 

A number of features used in the bicycle data fusion model are described above.  Below in 

Figure 8.16 the overall data fusion conceptual model is presented to summarize the network 

features used to train the bicycle data fusion model.  As noted above, this conceptual 

representation does not show all features used, for instance the access to jobs feature shown in 

the figure below actually has over 600 different versions when all worker industry, demographic, 

and access threshold combinations are computed.  

8.6 BICYCLE TRAFFIC DATA FUSION MODEL RESULTS 

The results of the bicycle data fusion models will be presented in four sections below.  The first 

section will describe and summarize the machine learning based data fusion models including 
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the features used and the cross-validation results.  The second section will describe and 

summarize the regression based data fusion models including the final model covariates and 

results of the cross validation results.  For the machine learning and regression approaches root 

mean squared error (RMSE), absolute percent error, and r-squared values are used to measure 

model performance.  The third section will then compare total bike miles traveled estimates 

when applying select models to the entire network.  In addition the third section will discuss an 

approach to handling upwardly biased estimates of bicycle traffic on low density local streets. 

The fourth section summarizes these results and offers a discussion about the two methods.   

8.6.1 Machine Learning Based Bicycle Traffic Data Fusion Model Cross-

Validation Results 

This section summarizes the cross validation procedures applied in the bicycle machine learning 

model development element of this research as well as describes the features used in each of the 

machine learning algorithms.  Similar to the vehicle model training, cross-validation was done 

through both an internal and external cross validation.  The results presented below are based on 

two machine learning algorithms including extreme gradient boosting (XgBoost) and random 

forest.  Two sets of cross validation are performed, one that is characterized as internal that uses 

random partitions in a 10-fold cross validation and is done as a part of the model training process 

within the caret package.  The second cross validation process, characterized as external, is 

performed on a select set of model specifications with high accuracy from the first validation and 

uses a stratified partition to do another 10-fold cross-validation.  The internal cross validation 

uses 10 folds and was performed twice.  The internal cross validation executes rather quickly for 

each specification taking about 10 minutes to run using seven cores running in parallel on a four 

core system with eight total processors each with 3.4 Ghz processor speed.  Multiple model 

specifications are tested in the internal validation step using two type of algorithms (XgBoost 

and Random Forest) with a set of selected model specification being put forward to the external 

cross validation process.  

Many different kinds of training features were tested but selected scenarios are described in 

Table 8.12 below.  The primary difference in the feature scenarios is that the All + Strava 

specification includes Strava data rider counts.  Models were tested separately to determine how 

the use of Strava impacts the model performance.  Otherwise, both models use a number of 

network features described in more detail in the data description section above.   

Table 8.12: Bicycle Model Feature Specification  

Diagnostic information includes RMSE and r-squared values while the number of features used 

in the model is also presented.  The internal validation results are a product of the initial model 

training using the caret package in R and uses a random partitioning process, using 10 folds and 

Feature 

Specification 

Description 

All  Uses all network features including multiple measure of centrality, 

accessibility, and network characteristics 

All + Strava  Uses all the network features described in "All" specification plus the 

Strava rider counts 
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performed two times.  The results from the internal cross validation tests show that the XgBoost 

algorithm and random forest algorithm are similar in performance with a minimum r-squared 

value of 28% for XgBoost versus a 27% in the random forest.  The maximum r-squared value for 

XgBoost is 32% while the maximum for random forest was 47 percent.  The number of features 

used in the XgBoost is generally fewer than the random forest with at most 277 features while 

the random forest used nearly double with as many as 511 features being used.  

Table 8.13: Internal Cross Validation Results for Vehicle Model 

One way to diagnose how the machine learning algorithms are using the input features is to use a 

measure of variable importance.  In Table 8.5 the number of features that were ultimately found 

to be useful in predicting bicycle AADT were summarized for each specification and algorithm.  

Of all of the features used in each algorithm, the top 20 most important are displayed in Figure 

8.6.  This chart summarizes the relative number of times a feature is used in the splitting of trees.  

The top panel shows both model specifications All and All + Strava) for the XgBoost algorithm.   

The XgBoost model using the Strava feature (All + Strava) used the Total Strava commute 

riders.  Access to total jobs and jobs within specific job categories (accommodation and food 

services, professional, scientific, and technical, as well as manufacturing) male workers all at 

various thresholds with common thresholds being at half-mile (2640), one mile (5280) and one 

and a half mile (7920).   Bike centrality was also in the top 20 most important features in the 

XgBoost model for both model specifications.   

Algorithm 

Specification 

RMSE R-squared Algorithm Feature 

Count 

Year 

All + Strava 33.1 47% Random Forest 514 2017+2018 

All + Strava 26.8 33% Random Forest 514 2018+2019 

All 32.3 39% Random Forest 511 2017+2018 

All 24.6 27% Random Forest 511 2018+2019 

All + Strava 34.7 29% XgBoost 226 2017+2018 

All + Strava 25.7 32% XgBoost 274 2018+2019 

All 34.6 32% XgBoost 238 2017+2018 

All 25.8 28% XgBoost 277 2018+2019 
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Figure 8.21: Variable importance for select bicycle data fusion models 

External validation tests are performed using both a 10-fold and a leave-one-out (LOO) process.  

The purpose of the external validation tests are twofold with the first motivation looking to 

understand in more detail the prediction error by volume bin and functional classification which 

is not possible to extract from the internal cross validation results.  The second motivation is to 

try and determine how much the model results might be biased by spatial autocorrelation making 

earlier test results somewhat biased because sites used in training may be near tests where the 

model is applied.  To control for this, the LOO cross validation only uses sites in the training that 

are at least 1,000 feet from the test site.   

Results from the external 10-fold cross validation analysis are presented below in Figure 8.22 

and shows the median absolute percent error by volume bin for the two model specifications (All 

and All + Strava) and both algorithm types.  These results demonstrate that XgBoost model 

works better than the random forest with in both specifications with 84% 87% error for the All + 

Strava and All models respectively and 115% and 113% using the random forest algorithm.  The 

addition of Strava data to the training features seems to make modest improvement in the median 

APE for all models and in all volume bins.  The best model is the XgBoost using the All + 

Strava specification with 84% error.  In this model the error varies depending on volume bin 

with the lowest volume bin exhibiting the highest error of 240% for the XgBoost and the lowest 

error in the 11-20 bin with 34% error. 
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Figure 8.22: External 10-fold cross validation for bicycle models 

Because the XgBoost algorithm worked best based on the internal validation and the 10-fold 

external validation the LOO cross validation process only tested this approach.  The All + Strava 

specification was selected for the LOO process due to its better performance the earlier 

validation tests.  Table 8.14 summarizes the results of the LOO cross validation.  These 

validation tests ensure that sites near a validation site are not included in the estimation by only 

using sites outside a 1,000 buffer.  Performing tests this way helps to reduce bias in the cross 

validation results with mean error of the LOO external validation rising to 80% from 19% mean 

APE in the 10-fold process summarized above.  Error was lowest in the 21-40 volume bin with 

just 34% and highest in the lowest volume bin with 228% mean APE.   

Table 8.14: External Leave-One-Out Cross Validation Results for Vehicle Model 

Algorithm Type Volume Bin Absolute Percent Error Number of 

Sites 

Mean Median 
 

XgbBoost 1-10 228% 169% 19 

XgbBoost 11-20 40% 25% 23 

XgbBoost 21-40 34% 28% 32 

XgbBoost 41-80 56% 59% 13 

XgbBoost 81-200 61% 68% 5 

XgbBoost All Sites 80% 44% 92 
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8.6.2 Statistical Bicycle Traffic Data Fusion Model Cross-Validation Results 

This section will describe the development of statistical models to estimate bicycle AADT 

including an exploration of the individual effects of the covariates used in the final model.  Since 

the number of available covariates for estimating a statistical model for bicycle traffic are 

numerous it was necessary to use a testing procedure to determine the variables with the best 

model prediction accuracy.  This process uses 10-fold cross-validation to test the prediction 

accuracy of thousands of possible model specifications.  Identical to the process used in the 

vehicle model development above, a large number of specifications are tried though in the 

bicycle model the total was much greater and included 497,664 possible specifications based on 

a grid of all possible combinations of select variables including population access, total 

employment access, retail, health, and warehouse workers, intersection density, auto centrality, 

shortest path centrality a two measures of the Strava data including the total rider counts and the 

proportion of the Strava rider counts that were tagged as commute.  All the accessibility 

measures use shortest network distance thresholds of either one-quarter mile, half-mile, or one 

and a half miles.  All models are estimated using a negative binomial regression specification 

due the counts data featuring over dispersion where the dependent variable (bicycle AADT) 

variance is greater than the mean of the counts which is generally the case for traffic counts data.   

A custom process was developed in R where for the 2018/2019 counts period data is partitioned 

into 10 folds using a stratified random sample ensuring functional classification and bike facility 

designations are equally distributed among the folds.  A negative binomial regression model is 

estimated on each of the k-1 groups (training data) and then estimated on the k-9 (test data) and 

then compared to the observed data.  To do this for all 497,664 models the total runtime is 6.9 

hours even using parallel processing.  For each selection of variables three performance metrics 

are computed include RMSE, mean absolute percent error (MAPE) and adjusted r-squared.  

Based on these metrics models top performing models are selected for further examination.  For 

the bicycle models the final estimated parameters are presented in Error! Reference source not 

found. for three select models using these model performance measures.  Model results below 

present the estimated coefficient and the associated standard error and p-value for selected 

models with the highest r-squared, the lowest RMSE, and lowest MAPE for 2018+2019 data.  

These results show that many of the covariates are correlated with an increase in bicycle traffic 

including the presence of off-street path, total job and retail job access, bike centrality 

(commute), and Strava riders and the proportion of Strava riders flagging their trip as commute.  

Features associated with a decreased traffic volume include population access and access to jobs 

with less than a high school education access and functional classification.  Functional 

classification was selected in the in the Lowest RMSE and Highest R-squared models and is 

operationalized as a factor variable with the reference set as off-street path.  The coefficients for 

this variable reveal that compared to off-street path facilities, highways and minor arterials have 

the biggest effect on reducing bicycle volume followed by local streets and minor arterials.  The 

effect of the local streets is surprising and might be capturing some of the lack of connectivity of 

the local streets network but that effect would ideally be captured with the centrality measures.   
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Table 8.15: Regression Results for Bike Model 

Coefficient Std. 

Error 

z value P-value Variable Year Metric 

0.0001594 1.10E-04 1.4463 0.1481 Total number of jobs 7920 Mi. 2018+2019 Highest R-

Squared -0.0017 1.53E-03 -1.1406 0.2540 Number of jobs for workers with 

Educational Attainment: Less than 

high school 7920 Mi. 

2.29E-04 5.97E-05 3.8308 0.0001 Bike_Centrality_Commute 

7.13E-04 2.24E-04 3.1795 0.0015 Strava Commute Riders 

-1.41E-04 4.65E-05 -3.0343 0.0024 Bike_Centrality_Rec 

-0.6525 0.2647 -2.4645 0.0137 Local (Reference - Off-street path) 

-0.3264 0.1960 -1.6654 0.0958 Collector 

-0.8497 0.1766 -4.8106 0.0000 Minor arterial 

-0.6418 0.2484 -2.5836 0.0098 Major arterial 

-1.2156 0.3888 -3.1264 0.0018 Highway 

-0.0462 0.1812 -0.2548 0.7989 No Facility (Reference - Bike Lane) 

1.62E-04 1.16E-04 1.4023 0.1608 Total number of jobs 7920 Mi. 2018+2019 Lowest 

RMSE 6.82E-07 9.01E-06 0.0757 0.9397 Population_2640 

-0.0018 0.0016 -1.1111 0.2665 Number of jobs for workers with 

Educational Attainment: Less than 

high school 7920 Mi. 

2.28E-04 6.04E-05 3.7806 0.0002 Bike_Centrality_Commute 

7.12E-04 2.25E-04 3.1585 0.0016 Strava Commute Riders 

-1.41E-04 4.71E-05 -2.9905 0.0028 Bike_Centrality_Rec 

-0.6553 0.2674 -2.4507 0.0143 Local (Reference - Off-street path) 

-0.3258 0.1960 -1.6622 0.0965 Collector 

-0.8511 0.1793 -4.7462 0.0000 Minor arterial 

-0.6408 0.2486 -2.5779 0.0099 Major arterial 

-1.2132 0.3911 -3.1020 0.0019 Highway 

-0.0455 0.1817 -0.2502 0.8024 No Facility (Reference - Bike Lane) 

2.47E-04 1.18E-04 2.0849 0.0371 Total number of jobs 7920 Mi. 2018+2019 Lowest 

MAPE 9.19E-06 5.95E-06 1.5452 0.1223 Population_5280 

-3.19E-03 1.66E-03 -1.9210 0.0547 Number of jobs for workers with 

Educational Attainment: Less than 

high school 7920 Mi. 

6.33E-04 4.21E-04 1.5045 0.1325 Number of jobs in NAICS sector 44-

45 (Retail Trade) 2640 Mi. 

2.58E-04 6.01E-05 4.3007 0.0000 Bike_Centrality_Commute 

7.13E-04 2.24E-04 3.1846 0.0014 Strava Commute Riders 

-1.91E-04 4.70E-05 -4.0603 0.0000 Bike_Centrality_Rec 

-0.0476 0.1578 -0.3016 0.7629 No Facility (Reference - Bike Lane) 

0.6914 0.1623 4.2610 0.0000 Off-street path 
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The bicycle facility variable is also operationalized as a factor variable with the bike lane set as 

the reference and is used in all models.  In the models with functional classification the off-street 

paths are included and so do not show up in the coefficient table whereas in the Lowest MAPE 

model functional classification is not used so the result for off-street path is shown.  In either 

specification the lack of bike facility is correlated with lower bicycle volumes.   

Not all variables are significant within the 0.05 level of significance but about three-quarters of 

the variables in each of the statistical model scenarios are significant at the 0.10 level.   Table 

8.16  below summarizes the three select models error measures.   

Table 8.16: Summary Information for Bicycle Regression Model 

The 10-fold holdout analysis results are further summarized by volume detailing the median 

APE for each of the models.  The model with the lowest median APE for all sites is the same 

model with the lowest mean APE, as would be expected, and is better by about 4 percent overall 

median APE.  The Lowest MAPE model has lower error in all the volume bins except for the 1-

10 and 81- 200 volume bins.  

Specification Performance 

Metric 

MAPE RMSE Adjusted 

R-Squared 

C000_7920 + CD01_7920 + 

Bike_Centrality_Commute + 

Commute_Counts + 

Bike_Centrality_Rec + Fc_Desc + 

Bike_Facility 

Highest R-

Squared 

93.7% 21.42 0.498 

C000_7920  + Population_2640  + 

CD01_7920 + 

Bike_Centrality_Commute + 

Commute_Counts + 

Bike_Centrality_Rec + Fc_Desc  + 

Bike_Facility 

Lowest 

RMSE 

94.7% 21.39 0.496 

C000_7920 + Population_5280 + 

CD01_7920 + CNS07_2640 + 

Bike_Centrality_Commute + 

Commute_Counts + 

Bike_Centrality_Rec + Bike_Facility 

Lowest 

MAPE 

86.2% 24.4 0.348 
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Figure 8.23: Top bicycle regression model median absolute percent error by volume bin 

8.6.3 Select Bicycle Data Fusion Model Application 

A primary objective of this research is to develop an estimation framework to apply network 

wide that will provide information about nonmotorized travel activity for the entire study area.  

This section will summarize the application results of select bicycle data fusion models by 

applying the models to the entire network in order to generate system wide bicycle activity 

estimates.  Additionally, an approach is suggested to handle over inflated counts on low volume, 

low density residential streets that make up significant lane miles of most urban networks.  The 

issues and a proposed solution will be discussed below.   

As summarized in Table 8.11 above, there are over 650 miles of network in the study region 

transportation system, including nearly 129 miles of bicycle lanes and over 50 miles of off-street 

paths.  A prime objective of this research is deploying the models estimated and validated above 

on the entire system in order to estimate a system wide measure of bicycle activity.  The results 

below in Table 8.17 show the total annual bicycle miles estimated using the XgBoost algorithm 

and the selected regression models.  These results show that in the first estimate period using 

counts from 2017 and 2018 (2017+2018), the estimated total bicycle miles traveled in the study 

region was 5.22 and 5.54 million miles for the All + Strava and All machine learning models 

respectively.  The regression model estimates are 5.20, 5.14, and 5.18 million miles for Highest 

R-Squared, Lowest MAPE and Lowest RMSE models respectively in the 2017+2018 estimation 

period.  For the second estimate period, from 2018 and 2019 (2018+2019) the total BMT 

estimate is 4.44 and 4.84 million miles for the All + Strava and All machine learning models 

respectively.   
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Table 8.17: Total Bicycle Miles Traveled for Select Models 

The estimates from the regression models are within 1% of one another in both estimation 

periods.  The machine learning model that uses Strava as a training feature appears to moderate 

the total estimate for the 2017/2018 period by about 6% and 2018/2019 period by 9 % compared 

to the All model that does not use this training feature.  This might be expected considering the 

Strava feature is not present on most local roads and so moderates estimated volume on those 

facilities.  Considering local roads make up over 60% of the network this moderation can have a 

significant impact on total BMT.   

Figure 8.24 below displays the total annual BMT estimates by selected model scenario and 

shows that the BMT summary aggregated by functional classification and bicycle facility for a 

Strava + All machine learning model and the  Lowest MAPE regression model.  Lowest MAPE is 

selected because MAPE was the performance measure used to select which of the machine 

learning model specifications to focus on.  The figure below shows that many BMT estimates are 

similar though some significant differences exist including the local streets where no bike facility 

exists.  The All + Strava machine learning model estimates 3.29 and 2.72 million BMT for the 

two estimation periods while the regression model only  estimates 3.03 and 2 million BMT in 

each estimation period.  The 2018+2019 estimation period is different by just over one million 

BMT which seems significant.   

Model 

Specification 

Algorithm 

Type 

Total Annual 

Bicycle Miles 

Traveled 

Bend 

Population 

Per 

Capita 

BMT 

Year 

All + Strava XgbBoost 5,225,730  96,058  0.15 2017+2018 

4,444,592  99,171  0.12 2018+2019 

All 5,544,053  96,058  0.16 2017+2018 

4,847,462  99,171  0.13 2018+2019 

Highest R-

Squared 

Negative 

Binomial  

5,203,217  96,058  0.15 2017+2018 

3,828,137  99,171  0.11 2018+2019 

Lowest MAPE 5,141,664  96,058  0.15 2017+2018 

3,861,726  99,171  0.11 2018+2019 

Lowest RMSE 5,187,065  96,058  0.15 2017+2018 

3,825,118  99,171  0.11 2018+2019 
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Figure 8.24: Bicycle miles traveled estimates for selecteds by bicycle facility type and 

functional classification 

Of note is the significant number of BMT that are being estimated on the local road system.  The 

local road system, even without a bicycle facility may be an attractive facility for people to 

bicycle due to its low vehicle and speed and volume and relative proximity to residential areas 

(population access) and parks.  However, many of these streets are likely to have zero counts 

given their low accessibility to key destinations and because of the nature of the traffic count 

programs where streets with likely bicycle users were counted, the available counts are likely 

biased upwards and using them in a network wide application is likely biasing the total BMT 

results upward.  In order to handle this issue, a proposed solution is offered where zero counts 

locations are introduced into the counts data at locations where zero bicycle traffic is likely.  The 

criteria for the random selection of these zero count locations are described below: 

 Local street functional classification with no bicycle lane 

 Population access within 0.5 miles must be 400 people or less 

 Bicycle centrality must be zero 

 No Strava rider counts 

Using this criteria about 41 miles or 10% of the local street network, become eligible for having 

a zero count assigned to it.  Of these local streets, 30 links are randomly selected and those 30 

locations are added to the counts data and the machine learning algorithms are retrained with the 
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inclusion of the simulated zero counts data.  The remainder of this section will detail the BMT 

results of the modeling with the inclusion of these randomly selected zero count locations.   

With the introduction of the zero counts the distribution of the data is altered and the negative 

binomial model is no longer appropriate and instead a Poisson model is used to estimate the 

model using the simulated zero counts.  Future research should explore the use of zero inflated 

hurdle models to see if that specification changes the final BMT results.  With about 25% of the 

counts now being zeros it’s likely this would be a more proper specification.   Table 8.18 below 

details the results for the new BMT estimate scenario where 30 zero count locations were 

inserted into the model training data.  On an aggregate basis, the total BMT decreases to 65% of 

initial estimate for the 2017/2018 estimation period, and 67% for the 2018/2019 estimation 

period when estimated using the XgBoost machine learning algorithm with the All + Strava 

specification.  Using the Poisson regression approach but including the simulated zeros the 

estimated BMT drops 55% of initial estimate for the 2017+2018 estimation period and 71% for 

the 2018+2019 estimation period.   

Table 8.18: Total Bicycle Miles Traveled Comparison with Simulated Zero Counts 

Scenario 

Figure 8.25 below details the aggregate BMT by functional classification and bicycle facility for 

both modeling approaches (machine learning vs. regression) and without simulated zero counts 

and with those simulated zero counts.  The insertion of zero counts into the machine learning 

training data depress the estimated BMT for the local streets with no bike facility, as designed, 

reducing the estimated BMT on those facilities from 2.72 million BMT to 1.21 million BMT for 

the 2018/2019 estimation period, a reduction of roughly 55 percent.  When the zero counts are 

included in the regression model approach the BMT on local streets with no bike facility goes 

from 2 million BMT to 1.21 million for the 2018/2019, a change of about change is about 40% 

percent.  Most facility types have a diminished BMT estimate in both periods but highway 

facilities with bike lanes see a marginal increase in the machine learning model.   

Model Type and 

Specification 

Estimation 

Periods 

Total Annual Bicycle Miles Traveled Percent 

Difference No Zero 

Counts 

Simulated Zero 

Counts 

Machine Learning: 

All + Strava 

2017+2018 5,225,730  3,385,390  65% 

2018+2019 4,444,592  2,985,239  67% 

Regression:   Lowest 

MAPE 

2017+2018 5,141,664  2,803,758  55% 

2018+2019 3,861,726  2,727,744  71% 
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Figure 8.25: Bicycle miles traveled estimates comparison of zero counts scenario by bicycle 

facility type and functional classification 

The insertion of zero counts at locations with low density and low network connectivity appear 

to have the desired effect of moderating the overall BMT estimates.  Figure 8.26 and Figure 4.25 

below shows the results of the network wide application of both model approaches and the 

scenarios using counts data and counts data with simulated zeros.  The left panel shows the 

results of the model applied to the network with all observed data while the right panel shows the 

model with simulated zero counts at low density locations.  Where as in the left panel there are 

no locations where zero counts are estimated (denoted by grey) while the right hand panel shows 

a small number of links in far flung parts of the network with no estimated bicycle activity.  

Additionally, the simulated zero counts scenario moderates bicycle volumes throughout the low 

density areas surrounding the core of the study region, with many more links in the 1-5 AADT 

volume bin.  In fact there only 11 links in the No Zero Counts scenario with 1-5 bicycle AADT 

while in the Simulated Zero Counts scenario there are 4,074 links with volume in this range for 

the XgBoost based model. 

Even though the aggregate measure of BMT similar, different by only 15% between the two 

model approaches in the 2018+2019 period, the network level estimates reveal a number of 

differences.  The XgBoost model appears to spread the activity out in the downtown area while 

the regression model targets the activity to a discrete corridors.  Those corridors are more 

pronounced in the scenarios where the zero counts were injected into the training data.  The 

XgBoost results do create about 30 links where the estimate is a negative value which are then 

converted to a zero for the purposes of aggregation and network visualization.   
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The table below presents some summary statistics of the estimated bicycle volumes on the 

14,000 links that make up the study region network and which were presented below in Figure 

8.26 and Figure 8.27 via map.  As expected the mean estimated summary statistics all decrease 

with the injection of simulated zero counts with the XgBoost model estimating a negative values 

on about 30 links, which are converted to zero.   

Table 8.19: Summary Statistics of Estimated Counts for Total Network Application of 

Bicycle Fusion Models 

Model 

Specification 

Scenario Estimated AADT Summary Statistics 

Minimum Maximum Mean Median Std. Dev.  

All + Strava No Zero 

Counts 

2.2 142 19 16 10 

Lowest 

MAPE 

6.3 165 15 13 9 

All + Strava Simulated 

Zero 

Counts 

0* 141 12 9 13 

Lowest 

MAPE 

4.4 150 11 7 10 

*30 links had an estimated AADT of between -0.6 & 0.0005 and were assigned a zero value 
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Figure 8.26: XgBoost - comparison of bicycle miles traveled scenarios – network level estimates 
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Figure 8.27: Regression - comparison of bicycle miles traveled scenarios – network level estimates 
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8.6.4 Bicycle Data Fusion Discussion 

The above section detailed the data, estimation procedures, validation, and results of data fusion 

models for bicycle traffic volumes in the study region.  The validation results showed that the 

XgBoost machine learning algorithm worked better than random forest across three separate 

cross-validation procedures that tested the different machine learning algorithms.  In order to 

specify a regression model, nearly 500,000 models are estimated and tested using 10-fold cross 

validation.  Of these models top performing models based on MAPE, r-squared, and RMSE are 

selected for further examination.  These validation tests also showed that including the Strava 

data helped to improve model accuracy, albeit only marginally in the machine learning tests 

though the Strava variable was found to be important in all of the regression models.   

In the case of the machine learning model application on the entire network in order to produce a 

BMT estimate, the specification with Strava data feature appeared to be useful, helping to 

moderate overall activity estimates.  However, using just the observed data in the data fusion 

models is likely biasing the BMT estimate upward, due to the selection of count locations where 

bicyclists are expected.  To handle this bias, an approach is suggested whereby zero counts are 

injected into the training data at locations where zero bicycle riders would be expected.  The 

results of this approach present the expected outcomes, further moderating estimated bicycle 

activity across the network, especially at locations a high likelihood of low bicycle ridership.  

Continued discussions are necessary with potential model users about an application ready 

bicycle data fusion model so model users completely understand the advantages and limitations 

of using either of the models examined in this research as tradeoffs exists.  

The use of machine learning in estimating network wide bicycle activity is novel, based on the 

current status of the literature.  Machine learning offers significant advantages for predicting 

important quantities such as bicycle volumes where inferential data is less important for model 

users.  Additionally, the selected machine learning algorithms offer powerful mechanisms for 

accounting for the interaction of many complicated relationships between network variables and 

are likely important tools for monitoring the system and understanding network wide activity.   

However, the results from the application of the machine learning model seem less reasonable 

that the regression model, spreading demand across the downtown area instead of focusing the 

activity to certain corridors.  It’s likely that with many fewer features in the training data for the 

regression models, the centrality and strava features have more impact than the machine learning 

approach where the effect might be getting washed out some by the large number of employment 

features.   

Either of these model approaches will only improve as more data is collected and the data 

collected and fed into the model estimation process.  Additionally, model results would be 

improved with updated data for certain data elements.  For instance, the decrease in bicycle miles 

traveled from the first estimation period to the second could be because the employment data 

used in training and application was a single year, representing 2017 since 2018 data has yet to 

be released by Census Bureau.  Other data from LEHD could be harnessed, including origin-

destination information that connects worker residential locations and their place of work.  A 

major issue in the training feature data is the use of population data from 2011.  These data were 

used because of their ease of availability but more updated data from American Community 
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Survey could be used to better reflect the conditions when traffic counts were collected.  Other 

model estimation and application improvements could be to evaluate the Strava data in more 

detail and correct places where potential issues are present.  Strava also offers an origin-

destination product that could be useful however in order to completely take advantage of these 

data a larger travel shed would likely be needed that expands beyond the boundaries of the urban 

area.  It’s generally accepted that a lot of the bicycle activity in the Bend study area is related to 

recreational travel and Bend’s proximity to path and trail networks outside the urban area.  One 

reason the cross validation results are lower than the vehicle models is because this out of area 

travel is not accounted for in any of the access measures.   

8.7 PEDESTRIAN TRAFFIC DATA FUSION MODEL  

The results of the pedestrian data fusion models will be presented in four sections below.  The 

first section will describe and summarize the machine learning based data fusion models 

including the features used and the cross-validation results.  The second section will describe and 

summarize the regression based data fusion models including the final model covariates and 

results of the cross-validation results.  For the machine learning and regression approaches root 

mean squared error (RMSE), absolute percent error, and r-squared values are used to measure 

model performance.  The third section will then compare total pedestrian miles traveled 

estimates when applying select models to the entire network.  In addition the third section will 

discuss an approach to handling upwardly biased estimates of bicycle traffic on low density local 

streets.  The fourth section summarizes these results and offers a discussion about the two 

methods.   

8.7.1 Data Description for Pedestrian Traffic Fusion Models 

A number of features used in the pedestrian data fusion model are described in the section below.  

Figure 8.28 shows the overall data fusion schema and presents key network features used to train 

the pedestrian data fusion model.  As noted above in the vehicle and bicycle model data 

description, this schema representation does not show all features used, for instance the access to 

jobs feature shown in the figure below actually has over 600 different versions when all worker 

industry, demographic, and access threshold combinations are computed.  
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Figure 8.28: Pedestrian data fusion model schema  

Table 8.20 below summarizes the AADT estimates for pedestrian traffic by functional 

classification for two time periods denoted below as 2017+2018 and 2018+2019. These period 

represent average volumes for each year denoted in count locations where counts are available 

for both years.  These averages are constructed and presented below to take advantage of as 

much of the counts data as possible for data fusion modeling and are used in place of applying a 

growth factor.  Observations from the table below show that median pedestrian traffic volumes 

on off-street paths are higher than other streets followed by local streets, minor arterials, and 

principal arterials with collectors demonstrating the least pedestrian volume.  The counts appear 

to be trending slightly upward for each facility type across aggregation periods.  
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Table 8.20: Bicycle Traffic Count Summary 

Pedestrian traffic have been collected at nearly 60 locations over the three years where data was 

actively collected.  Those locations are displayed below in Figure 8.29.  Many of the locations 

are on facilities where pedestrian users would be expected to use and thus inserts a certain 

amount of bias where the model would likely be biased upward, especially at sites with very low 

or zero pedestrian activity.  Later in the report an approach is proposed to handle the issue of 

having no zero counts in the observed pedestrian traffic counts data. Another feature shown in 

Figure 8.17 is the bicycle specific network elements including the location of bicycle lanes and 

off-street paths.  These will also be used in the model training process.  

Functional 

Classification 

Year Pedestrian AADT Summary Data 

Minimum Mean Median Std. 

Dev.  

Max Observations 

Off-street 2017+2018 15 267 144 286 900 14 

2018+2019 19.5 263 170 256 808 14 

Local 2017+2018 62 83 79 23.3 108 3 

2018+2019 9 59.8 62 31.6 103 9 

Collector 2017+2018 3 13.7 13.4 10.8 25 4 

2018+2019 3 15.7 15.3 8.82 26.5 5 

Minor Arterial 2017+2018 11.5 57.2 40.5 49.1 163 16 

2018+2019 11.5 72.5 47.5 61.3 234 21 

Principal 

Arterial - Other 

2017+2018 7 75.5 50 68.2 206 7 

2018+2019 12.8 76.1 58.8 64.4 196 7 

All Sites 2017+2018 3 99.2 50 113.1 900 44 

2018+2019 3 97.4 58.8 98.6 808 56 
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Figure 8.29: Pedestrian count locations 

Unlike with the vehicle and bicycle network system data, this research does not have access to 

high quality network data for the pedestrian system, other than the off-street path network data.  

The presence of sidewalk information is available in a regional data set but is not used in this 

research.  Pedestrian network data such as sidewalk quality and width as well as crossing 

treatments like mid-block crossing and cross walk type would be ideal features to use in the 

pedestrian models. 

Most of the training features in the pedestrian model are also used in the other user type models 

but one training feature novel to the pedestrian models is the access to transit stops.  A preferable 

transit related metric would be to use transit ridership but those data were not available at the 

time of the publication of this report.  However, Figure 8.28 below shows the transit stops 

accessible within one-half mile walk and represents an access to transit measure.  Transit access 

was developed using multiple thresholds from one-half mile to six miles in half-mile increments.  

These distance measures are network based using shortest path assumptions, not buffer or 

Euclidean based.  Figure 8.30 shows the areas of the study region where transit access is 
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available highlighting the density of access in the core of the region and revealing that much of 

the network has no access to transit within one-half mile walk trip.  These transit access 

measures do not account for frequency of service or other service quality measure.   

 

Figure 8.30: Transit stops accessible within ½ mile walk  

Other data used in the pedestrian data fusion model mirror those used in the bicycle models and 

can be reviewed in the section above describing those features.   

8.8 PEDESTRIAN TRAFFIC DATA FUSION MODEL RESULTS 

The results of the pedestrian data fusion models will be presented in three sections below.  The 

first section will describe cross-validation procedures and the model specifications for each 

model presented in this section.  The second section will summarize the internal and external 

cross-validation processes which use information including root mean squared error (RMSE) and 
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r-squared values to measure model performance.  Additionally in this section, the top ten most 

important features will be presented from the full model estimation.   The third section will then 

apply selected models across the network in order to examine model performance.  This section 

will also detail a proposed method to handle the bias in pedestrian traffic counts data due to the 

lack of zero counts being collected but surely exist at some locations on the network.  A 

comparison of aggregate network wide estimates of pedestrian activity will be performed to 

assess the performance of the modeling approaches.   

8.8.1 Machine Learning Based Pedestrian Traffic Data Fusion Model Cross-

Validation Results 

This section summarizes the cross validation procedures applied in the pedestrian data fusion 

model development element of this research as well as describes the features used in each of the 

machine learning algorithms.  Similar to the vehicle and bicycle model training, cross-validation 

was done through both an internal and external cross validation.  The results presented below are 

based on two machine learning algorithms including extreme gradient boosting (XgBoost) and 

random forest.  Two sets of cross validation are performed, one that is characterized as internal 

that uses random partitions in a 10-fold cross validation and is done as a part of the model 

training process within the caret package.  The second cross validation process, characterized as 

external, is performed on a select set of model specifications worthy of further investigation from 

the first validation and uses a stratified partition to do another 8-fold cross-validation.  Eight 

folds are used because the data set is too small when trying to partition based on a specified 

stratification using functional classification and with 10 folds some partitions do not have all of 

the functional classifications making application the training data impossible.  The internal cross 

validation uses 10 folds and was performed twice.  Multiple model specifications are tested in 

the internal validation step using two type of algorithms (XgBoost and Random Forest) with a 

set of selected model specification being put forward to the external cross validation process.  

Diagnostic information includes RMSE and r-squared values while the number of features used 

in the model is also presented.  The internal validation results are a product of the initial model 

training using the caret package in R and uses a random partitioning process, using 10 folds and 

performed two times.  The results displayed below in Table 8.21 summarize the internal cross 

validation tests and show that the XgBoost algorithm and random forest algorithm are similar in 

performance with a minimum r-squared value of 36% for XgBoost versus a 39% in the random 

forest.  The maximum r-squared value for XgBoost is 53% while the maximum for random 

forest was 53 percent.  The number of features used in the XgBoost is generally fewer than the 

random forest with at most 208 features while the random forest used nearly double with as 

many as 527 features being used.  The impact of using Strava data denoted by All + Strava is not 

consistent across model estimations.  Using the random forest algorithm, the Strava data does not 

improve the model as measured by r-squared but does reduce RMSE in the 2017+2018 

estimation period.  For the XgBoost algorithm, r-squared and RMSE is improved for the 

2017+2018 estimation period.   
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Table 8.21: Internal Cross Validation Results for Vehicle Model 

The top 20 most importance features are displayed below in Figure 8.31 for the All + Strava 

model for a select year and shows that employment features were commonly important variables 

in both model specifications, along with population measures and shortest path centrality 

measures.  Network features include in the top 20 most important variables are limited to 

designation as an off street path and the estimated vehicle volumes.   

 

Figure 8.31: Variable importance for select pedestrian data fusion models 

External validation tests are performed using both an 8-fold and a leave-one-out (LOO) process 

as was done in the vehicle and bicycle models validation above.  An 8-fold test was done 

because of the lower amount of data available for the pedestrian model prevented partitioning 

into 10 folds.  Results from the external 8-fold cross validation analysis are presented below in 

Algorithm 

Specification 

RMSE R-

squared 

Algorithm Year Feature 

Count 

All + Strava 122.9 49% Random Forest 527 2017+2018 

All + Strava 129.6 39% Random Forest 527 2018+2019 

All 138.1 51% Random Forest 524 2017+2018 

All 128.4 53% Random Forest 524 2018+2019 

All + Strava 139.8 53% XgBoost 192 2017+2018 

All + Strava 129.3 36% XgBoost 208 2018+2019 

All 148.6 51% XgBoost 165 2017+2018 

All 119.4 44% XgBoost 213 2018+2019 
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Figure 8.32 and shows the median absolute percent error by volume bin for the two model 

specifications (All and All + Strava) and both algorithm types.  These results demonstrate that 

XgBoost model works better than the random forest with in both specifications with having just 

57%  and 60% error for the All + Strava and All models respectively and 81% and 78% using the 

random forest algorithm.  The addition of Strava data to the training features seems to make 

modest improvement in the median APE for all models and in all volume bins.  The best model 

is the XgBoost using the All + Strava specification.  In this model the error varies depending on 

volume bin with the lowest volume bin exhibiting the highest error of 251% for the XgBoost and 

the lowest error in the 81-160 bin with 34% error. 

 

Figure 8.32: External 8-fold cross validation for bicycle models  

Because the XgBoost algorithm worked best based on the internal validation and the 10-fold 

external validation the LOO cross validation process only tested this modeling approach.  

Because both model specifications (All; All + Strava) performed about the same both 

specifications are tested in the LOO cross-validation.   Figure 8.33 summarizes the results of the 

LOO cross validation.  These validation tests ensure that sites near a validation site are not 

included in the estimation by only using sites outside a 1,000 buffer, though due to the 

geographic sparseness of the pedestrian data this condition is not hard to attain.  Performing tests 

this way helps to reduce bias in the cross validation results with median error of the LOO 

external validation rising to 66% from 67% mean APE in the 8-fold process summarized above.  

Error was lowest in the 81-160 volume bin with just 43% (random forest) and highest in the 

lowest volume bin with 297% median APE.   
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Figure 8.33: LOO Cross validation for pedestrian models  

The last summary below shows estimated AADT compared to observed AADT for both 

estimation periods using the full model (without any data withheld) showing the correlation 

between the two values.  It would be expected that the performance in this summary is high 

considering the estimation data is not separate from the application data.  In fact, showing model 

performance in this way demonstrates the machine learning model does very well in predicting 

the observations in its estimation data with a high r-squared and relatively low RMSE.   
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Figure 8.34: Correlation of estimated and observed AADT pedestrian traffic 

This chart does not show any out of sample predictive capability since all of the data in the 

comparison data set are included in the estimation data.  However, this comparison shows that 

with a full model estimated values are very close the observed data used to train the model.  The 

full model does appear to do less well with higher AADT values, likely due to the lower number 

of observations in those volume ranges 

8.8.2 Statistical Pedestrian Traffic Data Fusion Model Cross-Validation 

Results 

This section will describe the development of statistical models to estimate bicycle AADT 

including an exploration of the individual effects of the covariates used in the final model.  Since 

the number of available covariates for estimating a statistical model for bicycle traffic are 

numerous it was necessary to use a testing procedure to determine the variables with the best 

model prediction accuracy.  This process uses 8-fold cross-validation to test the prediction 

accuracy of thousands of possible model specifications.  Identical to the process used in the 

vehicle and bicycle model development above, a large number of specifications are tried  and 

included 31,104 possible specifications based on a grid of all possible combinations of select 

variables including population access, total employment access, retail, health, and warehouse 

workers, intersection density, auto centrality, shortest path centrality a two measures of the 

Strava data including the total rider counts and the proportion of the Strava rider counts that were 

tagged as commute.  The pedestrian model also included transit access measure at various 

distance thresholds.  All the accessibility measures use shortest network distance thresholds of 

either one-quarter mile, half-mile, or one and a half miles.  All models are estimated using a 

negative binomial regression specification due the counts data featuring over dispersion where 
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the dependent variable (pedestrian AADT) variance is greater than the mean of the counts which 

is generally the case for traffic counts data.   

A custom process was developed in R where for the 2018/2019 counts period data is partitioned 

into 8 folds using a stratified random sample ensuring bike facility designations are equally 

distributed among the folds, especially the off-street paths.  Eight folds are used because the 

amount of data is limited and the stratification process limits the number of folds.  A negative 

binomial regression model is estimated on each of the k-1 groups (training data) and then 

estimated on the k-9 (test data) and then compared to the observed data.  To do this for all 82,944 

models the total runtime is about 12 hours even using parallel processing.  For each selection of 

variables three performance metrics are computed include RMSE, mean absolute percent error 

(MAPE) and adjusted r-squared.  Based on these metrics models top performing models are 

selected for further examination.  For the pedestrian models the final estimated parameters are 

presented in Table 8.22 or three select models using these model performance measures.  Model 

results below present the estimated coefficient and the associated standard error and p-value for 

selected models using full data with the highest r-squared, the lowest RMSE, and lowest MAPE 

for the 2018+2019 data.  

These results shown in Table 8.22 below reveal that many of the covariates are correlated with 

an increase in pedestrian traffic including the presence of off-street path facility, shortest path 

centrality, total jobs, retail jobs, streets without a bike lane and Strava riders on a commute trip.  

Features associated with a decreased traffic volume include warehouse jobs, vehicle volumes and 

higher functional classification roads except that the highest classification, principal arterial, has 

a positive sign.   
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Table 8.22: Regression Results for Pedestrian Model 

Coefficient Std. 

Error 

z value P-

value 

Variable Year Metric 

1.58E-04 0.0000 5.2343849 0.0000 Total number of jobs 5280 Mi. 2018+ 

2019 

Lowest 

MAPE 1.03E-05 0.0000 1.7906993 0.0733 Population_7920 

-0.0019 0.0007 -2.5847896 0.0097 Number of jobs in NAICS sector 48-49 

(Transportation and Warehousing) 7920 Mi. 

6.00E-08 0.0000 1.3289739 0.1839 Shortest_Path_Centrality 

-1.03E-04 0.0000 -2.2675452 0.0234 Est_Veh_AADT 

-1.8150 0.3374 -5.3786179 0.0000 Local (Reference off-street path) 

-2.0746 0.3475 -5.9702033 0.0000 Collector 

-0.6852 0.4064 -1.6860395 0.0918 Minor Arterial 

0.3606 0.8560 0.4212569 0.6736 Principal Arterial - Other 

0.6965 0.2517 2.7678192 0.0056 No Bike Lane 

7.57E-05 0.0000 3.9013077 0.0001 Total number of jobs 7920 Mi. 2018+ 

2019 

Highest 

R-

Squared 
4.04E-04 0.0006 0.7102569 0.4775 Number of jobs in NAICS sector 44-45 

(Retail Trade) 2640 Mi. 

-0.0057 0.0018 -3.1146703 0.0018 Number of jobs in NAICS sector 48-49 

(Transportation and Warehousing) 2640 Mi. 

4.87E-08 0.0000 0.9902439 0.3221 Shortest_Path_Centrality 

-1.04E-04 0.0000 -2.4472025 0.0144 Est_Veh_AADT 

2.44E-04 0.0003 0.7908876 0.4290 Strava Commute Riders 

-2.3454 0.3665 -6.3989161 0.0000 Local (Reference off-street path) 

-1.9675 0.3476 -5.6605423 0.0000 Collector 

-0.9260 0.4068 -2.2766232 0.0228 Minor Arterial 

0.5487 0.8030 0.6833119 0.4944 Principal Arterial - Other 

1.0425 0.2648 3.9362692 0.0001 No Bike Lane 

7.55E-05 0.0000 3.8993362 0.0001 Total number of jobs 7920 Mi. 2018+ 

2019 

Lowest 

RMSE -6.25E-06 0.0000 -0.543102 0.5871 Population_2640 

4.41E-04 0.0006 0.7687996 0.4420 Number of jobs in NAICS sector 44-45 

(Retail Trade) 2640 Mi. 

-0.0058 0.0018 -3.1534368 0.0016 Number of jobs in NAICS sector 48-49 

(Transportation and Warehousing) 2640 Mi. 

5.09E-08 0.0000 1.0225663 0.3065 Shortest_Path_Centrality 

-9.74E-05 0.0000 -2.2029157 0.0276 Est_Veh_AADT 

2.41E-04 0.0003 0.7811447 0.4347 Strava Commute Riders 

-2.3094 0.3744 -6.1680651 0.0000 Local (Reference off-street path) 

-1.9950 0.3507 -5.6883413 0.0000 Collector 

-0.9484 0.4074 -2.3278852 0.0199 Minor Arterial 

0.4291 0.8275 0.5185853 0.6040 Principal Arterial - Other 

1.0161 0.2696 3.7695985 0.0002 No Bike Lane 
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The functional classification variable is operationalized in the models as a factor variable with 

the reference set to an off-street path so all coefficient estimates are in reference to this 

classification.  For instance compare to an off-street path, all else being equal, local streets have 

less pedestrian volume but collector streets have even less.  The bicycle facility variable is also 

operationalized as a factor variable with the bike lane set as the reference and is used in all 

models.  And since most arterials have a bike lane this variable might be picking up on some of 

the vehicle traffic conditions since the results for most models show that compared to streets 

with a bike lane, pedestrian traffic is greater on streets without a bike lane (No facility) and off-

street paths.   

Not all variables are significant within the 0.05 level of significance but the proportion of 

variables that are significant at the 0.05 level ranges from just over half to two-thirds while the 

proportion of variables significant at the 0.10 level ranges from about 60% to just over three-

quarters of the variables Table 8.23 below summarizes the three select models error measures.   

Table 8.23: Model Diagnostic Information for Bicycle Regression Models 

The 10-fold holdout analysis results are further summarized by volume detailing the median 

APE for each of the models.  The model with the lowest median APE for all sites is the same 

model with the lowest mean APE (Lowest MAPE), as would be expected, and has lower median 

APE than the next model by about 4 percent.  The Lowest MAPE model has lower error in all 

the volume bins except for the 11-20 and 601- 810 volume bins.  

Specification Performanc

e Metric 

MAPE RMSE Adjusted R-

Squared 

C000_5280 + Population_7920 + 

CNS08_7920 + 

Shortest_Path_Centrality + 

Est_Veh_AADT + Fc_Desc + 

Est_AADT + Bike_Facility 

Lowest 

MAPE 

88.9% 88.6 0.708 

C000_7920 + CNS07_2640 + 

CNS08_2640 + 

Shortest_Path_Centrality + 

Est_Veh_AADT + Commute_Counts + 

Fc_Desc + Est_AADT + Bike_Facility 

Highest R-

Squared 

111.2% 71.93 0.804 

C000_7920 + Population_2640 + 

CNS07_2640 + CNS08_2640 + 

Shortest_Path_Centrality + 

Est_Veh_AADT + Commute_Counts + 

Fc_Desc,Est_AADT + Bike_Facility 

Lowest 

RMSE 

113.0% 71.89 0.799 
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Figure 8.34: Top pedestrian regression model median absolute percent error by volume bin 

8.8.3 Select Pedestrian Data Fusion Model Application 

A primary objective of this research is to develop an estimation framework to apply network 

wide that will provide information about nonmotorized travel activity for the entire study area.  

This section will summarize the application results of select pedestrian data fusion models by 

applying the models to the entire network in order to generate system wide bicycle activity 

estimates.  Additionally, an approach is suggested to handle over inflated counts on low volume, 

low density residential streets that make up significant lane miles of most urban networks.  The 

issues and a proposed solution will be discussed below.   

A prime objective of this research is deploying the models estimated and validated above on the 

entire system in order to estimate a system wide measure of pedestrian activity.  The results 

below in Table 8.24 show the total annual pedestrian miles estimated using the XgBoost 

algorithm and the selected regression models.  These results show that in the first estimate period 

using counts from 2017 and 2018 (2017+2018), the estimated total pedestrian miles traveled in 

the study region was 18.3 and 17.3 million miles for the All + Strava and All machine learning 

models respectively.  The regression model estimates are 16.96, 11.4, 16.90 million miles for 

Highest R-Squared, Lowest MAPE and Lowest RMSE models respectively.  For the second 

estimate period, from 2018 and 2019 (2018+2019) the total PMT estimate is 15.9 and 15.2 

million miles for the All + Strava and All machine learning models respectively.  The regression 

model estimates are 14.1, 13.8, and 13.9 million miles for the Highest R-Squared, Lowest MAPE 

and Lowest RMSE models respectively.   
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Table 8.24: Total Pedestrian Miles Traveled for Select Models 

The estimates from the regression models for the 2017+2018 study period deviate somewhat 

substantially, especially in the case of the Lowest MAPE model that is about one-third less the 

other regression model.  There is more consistency in the latter study period models with all the 

result being within 3% of one another.  The machine learning model that uses Strava as a training 

feature appears to increase the total estimate for the 2017/2018 period by about 6% and 

2018/2019 period by 4 % compared to the All model that does not use this training feature.  It’s 

not clear how why the machine learning algorithm is making use of the Strava data but has 

demonstrated in the cross-validation model accuracy improve when using Strava data and the 

Lowest RMSE regression model also uses a measure derived from Strava data.   

Figure 8.35 below displays the total annual PMT estimates by selected model scenario including 

the All + Strava machine learning model and the Lowest MAPE regression models.  These 

specifications were chosen for their performance in low APE.  These results show that the BMT 

summary aggregated by functional classification for a Strava + All machine learning model and 

the Lowest MAPE regression model.  Lowest MAPE is selected because MAPE was the 

performance measure used to select which of the machine learning model specifications to focus 

on and so was followed for the selection of regression models.  The figure below shows that 

PMT estimates are higher in the application of the machine learning models on half the 

functional classifications including the local, collector, and minor arterial streets whereas the 

regression model estimates higher PMT on off-street paths, major arterials, and highways.  The 

collector classification has the largest percentage difference followed by off-street paths.   

Model 

Specification 

Algorithm 

Type 

Total Annual 

Pedestrian 

Miles Traveled 

Bend 

Population 

Per 

Capita 

BMT 

Year 

All + Strava XgbBoost 18,338,312 96,058  0.52 2017+2018 

15,876,191 99,171  0.44 2018+2019 

All 17,300,492 96,058  0.49 2017+2018 

15,220,786 99,171  0.42 2018+2019 

Highest R-

Squared 

Negative 

Binomial  

17,007,324 96,058  0.49 2017+2018 

14,009,875 99,171  0.39 2018+2019 

Lowest MAPE 11,393,385 96,058  0.32 2017+2018 

13,758,836 99,171  0.38 2018+2019 

Lowest RMSE 16,958,069 96,058  0.48 2017+2018 

13,921,306 99,171  0.38 2018+2019 
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Figure 8.35: Pedestrian miles traveled estimates for selected scenarios by functional 

classification 

Of note is the significant number of PMT that are being estimated on the local road system.  The 

local road system may be an attractive facility for people to walk due to its low vehicle and speed 

and volume and relative proximity to residential areas (population access) and parks.  However, 

many of these streets are likely to have zero counts given their low accessibility to key 

destinations and because of the nature of the traffic count programs where streets with likely 

pedestrian users were counted, the available counts are likely biased upwards and using them in a 

network wide application is likely biasing the total PMT results upward.  In order to handle this 

issue, a proposed solution is offered where zero counts locations are introduced into the counts 

data at locations where zero pedestrian traffic is likely.  The criteria for the random selection of 

these zero count locations are described below: 

 Local street functional classification with no bicycle lane 

 Population access within 0.5 miles must be 400 people or less 

 Shortest path centrality must be zero 

 No Strava rider counts 

Using this criteria about 41 miles or 10% of the local street network, become eligible for having 

a zero count assigned to it.  Of these local streets, 30 links are randomly selected and those 30 

locations are added to the counts data and the machine learning algorithms are retrained with the 
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inclusion of the simulated zero counts data.  The remainder of this section will detail the BMT 

results of the modeling with the inclusion of these randomly selected zero count locations.   

With the introduction of the zero counts the distribution of the data is altered and the negative 

binomial model is no longer appropriate and instead a Poisson model is used to estimate the 

model using the simulated zero counts.  Future research should explore the use of zero inflated 

hurdle models to see if that specification changes the final BMT results.  With about 25% of the 

counts now being zeros it’s likely this would be a more proper specification.   Table 8.25Table 

8.25below details the results for the new PMT estimate scenario where 30 zero count locations 

were inserted into the model training data.  On an aggregate basis, the total PMT decreases to 

67% of initial estimate for the 2017/2018 estimation period, and 55% for the 2018/2019 

estimation period when estimated using the XgBoost machine learning algorithm with the All + 

Strava specification.  Using the Poisson regression approach but including the simulated zeros 

the estimated BMT drops to 62% of initial estimate for the 2017+2018 estimation period and 

58% for the 2018+2019 estimation period.  These inclusion of these zero counts significantly 

reduces the total PMT estimated for the entire system.   

Table 8.25: Total Pedestrian Miles Traveled Comparison with Simulated Zero Counts 

Scenario 

Figure 8.36 below details the aggregate PMT by functional classification for both modeling 

approaches (machine learning vs. regression) and shows the PMT estimate without simulated 

zero counts and with those simulated zero counts.  The insertion of zero counts into the machine 

learning training data depress the estimated PMT for the local streets, as designed, reducing the 

estimated BMT on those facilities from 9.45 million PMT to 4.99 million PMT for the 

2018/2019 estimation period, a reduction of roughly 48 percent.  When the zero counts are 

included in the regression model approach the PMT on local streets goes from 6.86 million PMT 

to 2.05 million for the 2018/2019, a change of about 70% percent.  Most facility types have a 

diminished PMT estimate in both periods.   

Model Type and 

Specification 

Estimation 

Periods 

Total Annual Bicycle Miles 

Traveled 

Percent 

Difference 

No Zero 

Counts 

Simulated Zero 

Counts 

Machine Learning: 

All + Strava 

2017+2018 17,300,492  11,585,489  67% 

2018+2019 18,338,312  10,040,018  55% 

Regression:   Lowest 

MAPE 

2017+2018 11,393,385  7,100,915  62% 

2018+2019 13,758,836  7,975,721  58% 
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Figure 8.36: Pedestrian miles traveled estimates comparison of zero counts scenario by 

bicycle facility type and functional classification 

The insertion of zero counts at locations with low density and low network connectivity appear 

to have the desired effect of moderating the overall PMT estimates.  Figure 8.37and Figure 8.38 

below shows the results of the network wide application of both model approaches and the 

scenarios using counts data and counts data with simulated zeros.  The left panel shows the 

results of the model applied to the network with all observed data while the right panel shows the 

model with simulated zero counts at low density locations.  Where as in the left panel there are 

no locations where zero counts are estimated (denoted by grey) while the right hand panel shows 

a small number of links in far flung parts of the network with no estimated pedestrian activity.  

Additionally, the simulated zero counts scenario moderates pedestrian volumes throughout the 

low density areas surrounding the core of the study region, with many more links in the 1-5 

AADT volume bin.  In fact there no links in the No Zero Counts scenario with 1-5 pedestrian 

AADT while in the Simulated Zero Counts scenario there are 2,112 links with volume in this 

range for the XgBoost based model.  

Aggregate measure of PMT between the two model approaches in the 2018+2019 period are 

different by about 25% with the machine learning model estimating more pedestrian activity.  

These differences are most stark in the core of the study region.  The XgBoost model appears to 

spread the activity out in the downtown area while the regression model targets the activity to a 

discrete corridors.  Those corridors are more pronounced in the scenarios where the zero counts 

were injected into the training data.  The XgBoost results do create about 800 links where the 

estimate is a negative value which are then converted to a zero for the purposes of aggregation 

and network visualization.   
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The table below presents some summary statistics of the estimated bicycle volumes on the 

14,000 links that make up the study region network and which were presented below in Figure 

8.37 and Figure 8.38 via map visualization.  As expected the mean estimated summary statistics 

all decrease with the injection of simulated zero counts with the XgBoost model estimating a 

negative values on about 800 links, which are converted to zero.   

Table 8.26: Summary Statistics of Estimated Counts for Total Network Application of 

Pedestrian Fusion Models 

Model 

Specification 

Scenario Estimated AADT Summary Statistics 

Minimum Maximum Mean Median Std. 

Dev.  

All + Strava No Zero Counts 8.62 601 69.5 49  84.1 

Lowest 

MAPE 

No Zero Counts 6.86 995 52.2 37  46.8 

All + Strava Simulated Zero 

Counts 

0* 578 43.3 26  60.2 

Lowest 

MAPE 

Simulated Zero 

Counts 

3.06 1057 25.8 11  47 

*811 links given an estimated AADT of between -2.55 & -0.0003 

The regression model maximum estimate is larger than the machine learning model maximum 

estimated values and exceeds the maximum range of the observed counts data. 
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Figure 8.37: XgBoost - comparison of bicycle miles traveled scenarios – network level estimates 
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Figure 8.38: Regression - comparison of bicycle miles traveled scenarios – network level estimates 
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8.8.4 Pedestrian Data Fusion Discussion 

The above section detailed the data, estimation procedures, validation, and results of data fusion 

models for pedestrian traffic volumes in the study region.  The validation results for the machine 

learning models showed that the XgBoost machine learning algorithm worked better than 

random forest across three separate cross-validation procedures though for some volume bins in 

the 8-fold and LOO cross validations random forest performed better in terms of median APE.  

These validation tests also showed that including the Strava data only improved APE marginally 

in the 8-fold cross validation and decreased performance marginally in the LOO cross-validation.   

The All + Strava model was chosen for additional exploration comparing results of the applied 

model with the regression mode.  The network wide application of the data fusion models PMT 

results seemed showed that Strava data increased total activity estimates, which was the opposite 

effect of the inclusion of Strava data in the bicycle models where Strava data moderated the 

overall estimate.  However, using just the observed data in the data fusion model is likely biasing 

the PMT estimate upward, due to the selection of count locations where pedestrians are expected.  

To handle this bias, an approach is suggested whereby zero counts are injected into the training 

data at locations where zero pedestrians would be expected.  The results of this approach present 

the expected outcomes, further moderating estimated pedestrian activity across the network, 

especially at locations where pedestrian activity is likely to be low.  Continued discussions are 

necessary with potential model users about an application ready pedestrian data fusion model so 

model users completely understand the advantages and limitations of using either of the models 

examined in this research as tradeoffs exists. 

The use of machine learning in estimating network wide pedestrian activity is novel, based on 

the current status of the literature.  Machine learning offers significant advantages for predicting 

important quantities such as pedestrian volumes where inferential data is less important for 

model users.  Additionally, the selected machine learning algorithms offer powerful mechanisms 

for accounting for the interaction of many complicated relationships between network variables 

and are likely important tools for monitoring the system and understanding network wide 

activity.  These models will only improve as more data is collected and the data collected and fed 

into the model estimation process.  However based on the features currently being used in the 

machine learning algorithms, results appear less reasonable than the regression models with 

activity estimates being spread out across the network instead of being concentrated on select 

corridors.   

Model results would be improved with updated data for certain data elements.  For instance, the 

decrease in pedestrian miles traveled from the first estimation period to the second could be 

because the employment data used in training and application was a single year, representing 

2017 since 2018 data has yet to be released by Census Bureau, as noted above in the bicycle data 

fusion model discussion section.  Other data from LEHD could be harnessed, including origin-

destination information that connects worker residential locations and their place of work.  A 

major issue in the training feature data is the use of population data from 2011.  These data were 

used because of their ease of availability but more updated data from American Community 

Survey could be used to better reflect the conditions when traffic counts were collected, again as 

noted in the section above on bicycle data fusion.  Other model estimation and application 

improvements could be to evaluate the Strava data in more detail and correct places where 
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potential issues are present.  Transit ridership data would likely improve the models instead of 

the grosser measure of transit stop access.  

8.9 DATA FUSION RESULTS COMPARISON 

The sections above detail data fusion models using parametric and non-parametric approaches 

for three modes of travel and this section will briefly compare the results from each of those 

exercises.   

Table 8.27 below summarizes the r-squared, RMSE, and median absolute error for the optimal 

models for each mode.  Optimal models were selected based on the algorithm and specification 

with the lowest absolute percent error found through various cross-validations tests performed 

above.  The vehicle models work best compared to the other modes with lower error across 

validation tests as well as in the full model where a model is estimated on the full data set in 

order to predict the not out-of-sample data.  Since the regression model only did a 10-fold cross 

validation these results are the most comparable across tests.  Based on these tests the XgBoost 

model and regression model are comparable with the regression model exhibiting lower median 

APE but lower r-square values.  Vehicle counts data are more numerous which helps with model 

training for both modeling approaches and the functional designation provides a significant clue 

to the training of models as to what bucket the volume is likely to fall into thus helping to 

improve model performance.  With independent estimates of VMT from the HPMS these models 

can be more fully validated and show that at the network level and functional classification level 

both of these modeling approaches work well.  With probe data the vehicle models would likely 

improve. 

The bicycle models do not perform as well as the vehicle models, likely due to a much smaller 

training set which makes cross validation harder.  Lower overall volumes also make reported 

error hard to compare with the vehicle volumes.  For instance if the actual volume for a given 

location were 30 bikes per day (average volume for all sites in 2018/2019 period) and the model 

estimated 20 the error is 50 percent.  These same issues exist for pedestrian counts.  Bike and 

pedestrian traffic volume have some correlation to facility type, namely off-street paths, but no 

volume classification is yet defined for bike and pedestrian transportation networks and since 

traffic monitoring for these modes is still in the beginning stages a full enough understanding of 

how to develop such a classification scheme does not yet exist.  Even though error for the bicycle 

models is not extreme, though certainly higher than the vehicle models, an aim for the future of 

bicycle and pedestrian data collection should be to continue collecting data in new locations to 

try and meet the number of locations available in the vehicle counts (n = 250) though its likely 

more sites will be needed to make the situation of low volumes overall for bike and pedestrian 

workable from an error perspective.   

For the bike and pedestrian models the regression approach appears superior based on the cross 

validation tests.  The XgBoost approach resulted in median error of 43% while the regression 

approach produced only 39% error.  For the pedestrian model the XgBoost model resulted in 

57% error while the regression model was able to reduce the median APE to just 36 percent.   
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Table 8.27: Model Diagnostic Information Summary All Modes and Select Specifications 

8.10 DISCUSSION AND LIMITATIONS 

The above section describes the data, development and application of data fusion models for 

vehicle, bicycle and pedestrian travel activity.  The vehicle models show significantly better 

performance compared to the bicycle and pedestrian models.  With additional data collected over 

the next few years these models may achieve better accuracy but some challenges inherent in 

bicycle and pedestrian volume data for this study area, such as low overall volumes, may 

continue to limit the overall accuracy of modeled volume data.   

Other data sources and training features would likely help the nonmotorized models.  The 

bicycle models would benefit from access to parks and trails outside the urban area while the 

pedestrian models would benefit from better information on transit such as ridership.  Both 

bicycle and pedestrian models (and vehicle) would benefit from updated population data.  

Pedestrian models may benefit from Strava’s running/walking data and both modes could benefit 

from the origin and destination product.  Additionally, other third party data sources currently on 

the market should be evaluated to understand how they could impact model performance.   

Other improvements might come from adjustment of the hyper parameters used in the model 

training which were tuned with some benefit in model performance in this work but could be 

explored more in any future application of these techniques.   

Mode Model 

Type 

Performance 

Metric 

Cross-Validation Method Full 
Model  Internal  External - 10-

Fold* 
External - LOO 

Vehicle XgBoost R-Squared 54% 63% 67% 0.999 

RMSE 6631 6131 6551 379 

Median APE  NA 39% 40% 0.990 

Regression R-Squared NA 55% NA 50% 

RMSE NA 7897 NA 7212 

Median APE  NA 40% NA 39% 

Bicycle XgBoost R-Squared 32% 15% 19% 95% 

RMSE 25.7 24.6 27.4 9.7 

Median APE  NA 43% 44% 13% 

Regression R-Squared NA 35% NA 42% 

RMSE NA 24.4 NA 22.7 

Median APE  NA 39% NA 55% 

Pedestrian XgBoost R-Squared 36% 10% 32% 99.0% 

RMSE 129.3 165.1 130.6 39.7 

Median APE  NA 57% 67% 15% 

Regression R-Squared NA 71% NA 80% 

RMSE NA 71.9 NA 70 

Median APE  NA 36% NA 77% 
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For network scale travel monitoring it’s not yet certain what level of confidence is necessary for 

useful bicycle and pedestrian miles traveled.  The next section of this report will explore the use 

of these BMT and PMT measures in aggregate level crash risk analysis to see if the current 

imprecision in the estimates is acceptable.  
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9.0 NONMOTORIZED CRASH ANALYSIS 

Crash risk for people that use nonmotorized travel is typically understood to be greater than for 

motorized travel though few studies assessing risk using exposure based crash rates have been 

conducted.  Exposure based crash risk analyses require traffic counts and related estimates of 

annual activity which are not common data for nonmotorized travel.  One of the primary 

objectives of this research project is to use the nonmotorized traffic count data and related 

network wide traffic estimates in crash risk analysis to better document the crash risk disparities 

for nonmotorized users.   Additionally, this research aims to offer information for how roadway 

features impact disparate crash risk at the system level, modeling features like nonmotorized 

traffic volume, functional classification, and vehicle volume and their role increasing risk for 

nonmotorized users.  For the Bend, Oregon study area crash modeling is limited due to small 

number of nonmotorized crash injuries.   

A literature is presented summarizing existing literature on nonmotorized crash risk at the system 

level.  Additional literature is provided documenting other examples of using measures of 

nonmotorized travel activity from direct demand models for crash analysis.  This research adds 

to the literature by offering additional information on crash risk at both an aggregate and 

disaggregate level for a small urban area in Oregon.    
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10.0 LITERATURE REVIEW OF NONMOTORIZED CRASHES 

The literature review section below examines the past research and public agency reports that 

examined nonmotorized crash risk at an aggregate system wide level.  The literature review then 

documents the literature that has employed direct demand modeling for nonmotorized activity 

estimates to be used in crash analysis.   

10.1 AGGREGATE NONMOTORIZED CRASH RISK LITERATURE 

REVIEW 

Only minimal research has attempted to describe the bicycle crash risk on the aggregate, system 

wide level. Using data from the National Household Travel Survey for 2001, Pucher and Dijkstra 

(2003) showed that fatal bicycle crash rates are 12 times higher than vehicle occupants and 

pedestrians 23 times more likely to be killed in a traffic related injury crash. The authors also 

found that bicycle crash rates in the U.S. are double those in Germany and three times higher 

than kilometer based rates in the Netherlands.  The authors are not able to compute non-fatal 

injury rates due to unreliable data.  Pucher and Dijkstra point out that Germany and the 

Netherlands enforce much lower speed limits for vehicle traffic and also administer more 

widespread implementation of turn restrictions at intersections that prioritize nonmotorized user 

safety.  Beck et al. (2007) used data from 2001 National Household Travel Survey and fatal 

crash information from the Fatal Accident Reporting System (FARS) and non-fatal crash data 

from the General Estimates System (GES) to calculate person trip crash rates for multiple modes 

of travel. The researchers found that fatal crash rates for people riding bicycles were more than 

double passenger vehicle rates and nonfatal injury rates for bicyclists were nearly double those of 

passenger vehicle occupant rates.  Pedestrian fatal injury rates were measured to be about 49% 

higher than vehicle occupant fatal injury risk.  McAndrews (2011) compiled travel survey data 

for Stockholm, Sweden and San Francisco, CA in order to estimate travel activity for motorized 

traffic, bicycle and pedestrian users.  The authors concluded that based on person miles of travel 

bicycle and pedestrian fatal injury rates were as much as 85% lower compared to motorized 

travelers using mileage based rates but as much as four times higher using person minutes of 

travel.  McAndrews et al. (2013) measured travel activity in Wisconsin for all modes using an 

add-on to the National Household Travel Survey and created exposure based rates for fatal 

injuries and non-fatal injuries.  The authors found that the relative risk of bicycle travel 

compared to motor vehicle travel was 10.5 and 17.1 for fatal and non-fatal injuries respectively 

using the mileage based exposure measures.  For pedestrian fatal and non-fatal injury rates the 

relative risk was 11 and 11.8 respectively.  Mindell et al. (2012) calculate miles of travel based 

fatal and injury rates for vehicle, bicycle, and pedestrians using a national household travel 

survey to measure travel activity and multiple sources of crash data.  They demonstrate that the 

relative fatal injury risk for people who bike and walk in the UK is 10 to 11 and 13 to 16 

respectively, times, higher than the fatal injury rate to of people who drive.  For non-fatal injury 

the relative risk per distance traveled compared to driving is 50-58 and 49-59 for biking and 

walking respectively.  The authors not that the bicycle injury rates are likely over estimates 

because the inj8ury data over counts traffic related injuries of people biking but that the 

pedestrian injury rates are likely underestimated because injury data is missing for on-road 
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pedestrian injuries.   Teschke et al. (2013) used a travel survey of British Columbia, Canada to 

calculate fatal and injury crash rates per kilometer for automobile users and people who ride 

bicycles and walk. They found that fatal crash rate for bicyclists was over two and a half times 

that of automobile users and injury crash rates were nearly three and a half times higher for 

people riding bicycles. For pedestrian injuries the mileage based fatal injury rate was measured 

to be 7.6 times higher than vehicle fatal injury and 2.7 times for non-fatal injury.  This research 

relies on travel surveys for calculating travel distance which is relies on self-reported distance 

which can introduce error into the travel distance measures. Additionally, travel surveys do not 

typically account for recreational trips which can make up a large proportion of bicycle travel for 

a given region. These two limitations may bias the previous crash rate estimates upward since 

they do not fully account for the full value of the denominator.   

Roll (2018) estimated bicycle fatal and non-fatal injury rates using miles traveled for the Eugene-

Springfield urban area in Oregon.  The results demonstrated that for the time period examined, 

bicycle fatal injury rates were three times higher than motorized fatal injury rates, and non-fatal 

injury rates were 2.1 times higher.   

There is some debate about whether distance based exposure measures should be used versus 

time based measures. Hakkert and Brainmaister (2002) examine this debate and concluded that 

deciding between distances versus time based risk depends on the issue being examined. They 

point out but don’t examine fully one contradiction where increased speed can reduce time based 

exposure but then inherently increase risk due to the implications of higher speed. However, it is 

commonly understood that speed increases risk, especially at the upper margins of vehicle speeds 

when the driver’s ability to react is further limited. Though an interesting philosophical debate, 

this research will rely on distance based metrics for the crash analyses presented below. 

Table 10.1 below summarizes the factor by which nonmotorized crash injury rates differ from 

motorized crash injury rates, further summarizing the literature review above.  This summary 

shows that bicycle fatal injury rates are between 2.3 and 23 times fatal injury rates for motorized 

travel with non-fatal injury rates being between 2.1 and 3.7 times higher than motorized injury 

rates.  Pedestrian fatal injury rates are between 1.5 and 12 times higher than motorized fatal 

injury rates with non-fatal injury rates at least 2.7 times higher than motorized non-fatal injury 

rates.   
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Table 10.1: Summary of Crash Risk Disparity  

Reference Pedestrian  Bicycle Study Area 

Fatal 

Injury 

Non-Fatal 

Injury 

Fatal 

Injury 

Non-Fatal 

Injury 

Pucher and 

Dijkstra (2003) 

12 Not-

Reported 

23 Not-

Reported 

US 

Beck et al. 

(2007)  

1.5 Not-

Reported 

2.3 Not-

Reported 

US 

McAndrews et 

al (2011)  

0.15 - 0.28 Not-

Reported 

0.18 - 0.55 Not-

Reported 

Stockholm, Sweden & 

San Francisco, CA 

Mindell et al. 

(2012) 

13-16 49-59 10-11 50-58 United Kingdom 

Teschke et al. 

(2013)  

7.6 2.7 2.7 3.7 British Columbia 

McAndrews et 

al (2013)  

11 11.8 10.5 17.1 Wisconsin 

Roll (2018) Not-

Reported 

Not-

Reported 

3.0 2.1 Eugene-Springield 

Oregon 

 

10.2 DIRECT DEMAND MODELS AND CRASH RISK ANALYSIS  

This section of the literature review documents the previous work estimating and deploying 

direct demand models for use in nonmotorized crash risk analysis.  Though less common just a 

few years ago, the approach of estimating exposure using this analytic method now has a number 

of examples.  In 2018 the FHWA released the Guide for Scalable Risk Assessment Methods for 

Pedestrians and Bicyclists (SCRAM) outlining acceptable approaches for nonmotorized crash 

analysis.  This guide discusses appropriate methods for assessing risk at various levels including 

at the system level where estimates of bicycle and pedestrian activity can be used to generate 

measures of risk for use in performance monitoring.  A method for deriving exposure measures 

discussed in detail includes the direct demand modeling approach.   

Thomas et al. (2017) develop safety performance functions (SPFs) for three types of bicycle 

crashes using volume measures from a direct demand model.  Crash types include all intersection 

crashes, bicyclists opposite direction, and bicyclists, angle crashes using eight years of crash 

police crash data from Seattle, WA. Bicycle traffic volume data is estimated using a direct 

demand model through a so-called “ball park’ method that relates short-term and automated 

counter data at 46 intersections to factors correlated with bicycle activity. Vehicle traffic volume 

was unavailable and functional classification was used instead. The authors employ a 

Conditional Random Forest (CRF) regression analysis to uncover eligible crash predictors before 

specifying an SPF using negative binomial regression. The safety performance function uses the 

natural log of bicycle volume as well as estimates of annual average daily pedestrian traffic in 

conjunction with intersection variables like the presence of signals, entering segment legs, 

parking, lanes, and transit stops. The authors also include the amount of commercial building 

space within a specified buffer. Thomas et al. (2017) find that an increase in motor vehicle 

volumes as measured by the functional classification increases the risk for bicycle crashes for all 

crash types. Intersections with traffic signals increased the risk of bicycle crashes as did the 
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presence of parking. This research also found the presence of bicycle lane and shared markings 

had a positive correlation with bicycle crashes. The authors apply the estimated SPFs using three 

approaches including an unadjusted prediction of bicycle crashes, Empirical Bayes adjusted 

prediction of bicycle crashes, and a Potential for Safety Improvement (Persaud et al. 1999) where 

the difference between the EB expected and SPF predicted crashes is calculated. The authors 

conclude that the data and methods used in the analysis offer a way for cities to prioritize 

locations for further investigation and likely treatments. 

Griswold et al (2018) develop and apply a direct demand pedestrian model for the purposes of 

safety analysis for the California Department of Transportation.  Using short-term pedestrian 

counts data from 1,270 intersections on the CalTrans system, a direct demand model is estimated 

using employment, population, street density, walk commute share and functional classification 

as independent variables.  The authors specified their model using an ordinary least squares 

regression with log-transformation of many of the independent variables.  Model performance 

was tested by randomly splitting the data into 90 percent training and 10 percent testing 

partitions.  This Monte Carlo cross validation scheme was performance 300 times with the 

adjusted r-squared results of 0.714.  The results of the model are then applied to the entire 

CalTrans network in order to provide estimates of pedestrian traffic for use in project 

prioritization.  No aggregate risk measures are calculated using the exposure measures.   

Hasani et all (2018) use bicycle and pedestrian volume data collected at 45 intersections in San 

Diego, CA to estimate a direct demand model for use in nonmotorized risk analysis.  These data 

are collected using video and processed by computer vision algorithm, then factored to represent 

annual traffic conditions.  The authors employ the activity estimates calculate risk at the 

intersection level across the study area.  The authors weight injuries with different severities by 

using a cost of injuries method that gives higher weight to more severe injuries.  This research 

concludes by offering priority locations for intervention based on their proposed methodology 
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11.0 CRASH DATA DESCRIPTIVES 

This section summarizes the crash injuries for motorized, bicycle, and pedestrian crash 

participants in the Bend, Oregon urban area, the area under examination in this research.  The 

crash injury data are derived from the official Oregon Department of Transportation Crash Data 

System (CDS) and include all injuries reported to the agency.  It’s possible the crash injuries for 

nonmotorized participants are not fully reported since research in cities outside of Oregon have 

demonstrated a systematic underreporting of these kinds of crashes (Shinar et al 2018; Winters & 

Branion-Calles 2017; Langley et al 2003).  Nevertheless, the ODOT CDS is the most 

comprehensive and high quality database of crash injury available for this research.   

Injury severity codes are defined in Table 11.1 below and include fatal, severe, moderate and 

minor injuries categorized into the KABC index.  The figure below summarizes the annual 

number of injuries by injury severity for each of three modes of travel including motorized, 

pedestrian, and bicycle.   

Table 11.1: Injury Severity Description 

 Motorized transport includes passenger car, heavy and light duty truck, and motorcycle.  Figure 

11.1 shows that for both motorized and nonmotorized travel, fatal injuries are relatively 

infrequent compared to severe and all injuries but generally consistent from one year to the next, 

especially for nonmotorized injuries.   

Code  Short 

Description 

Long Description 

K Fatal  Fatality information includes motor vehicle traffic crashes that 

result in the death of an occupant of a vehicle or a non-motorist 

within 30 days of the crash. 

A Incapacitated/  

Severe Injury 

Any injury to the driver of the identified UNIT that prevents the 

injured party from walking, driving, or normally continuing the 

activities he or she was capable of performing before the injury 

occurred. Examples include broken or distorted limbs, skull or 

chest injuries, abdominal injuries, unconscious at or when taken 

from the crash scene, unable to leave crash scene without 

assistance, etc. 

B Visible Injury Check this box to indicate any injury to the driver of the 

identified UNIT which is evident to observers at the scene of 

the crash. Examples include a visible lump, abrasions, cuts, 

bruises, minor lacerations, etc. 

C Complaint of 

Pain 

Any injury claimed by the driver of the identified UNIT. 

Examples include momentary unconsciousness, complaint of 

pain, limping, nausea, etc. 
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Figure 11.1: Injuries by travel mode and year in Bend urban area 

Figure 11.2 below summarizes the average annual injury count for each mode, severity and 

aggregation period.  Three aggregation periods are shown including periods that include the 

years 2014 through 2018 (2014+2018) 2013 through 2017 (2013+2017) and 2007 through 2012 

(2007+2012).  The first two periods, 2014+2018 and 2013+2019 will be used later in this report 

as injury data for crash rate calculation.  The third period, 2007+2012, is used as a reference to 

compare the other two periods to assess stability of annual average injury counts.   
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Figure 11.2: Average annual injuries by mode, and aggregation period 

Figure 11.2 shows that annual average bicycle and pedestrian injury counts are relatively stable 

for most severity categories.  There are 0.2 fatal bicycle injuries per year in the latter study 

periods, lower than the reference aggregation period.  Average annual pedestrian fatal injuries 

are consistent in each aggregation period with around one of these injuries on average each year.  

Average annual severe injuries are also consistent from year to year with around 1.5 bicycle 

incidents per year and two pedestrian severe injuries per year for the 2014+2018 and 2013+2017 

aggregation periods, similar to the reference period.  A similar story is true for all injuries where 

on average for the 2014+2018 and 2013+2017 aggregation periods there are about 20 bicycle 

injuries and 10 pedestrian injuries which is similar to the reference aggregation period.  Though 

it’s true the bicycle and pedestrian injuries have been relatively consistent each year the total 

motorized injuries have increased in the latter two aggregation periods compared to the reference 

period while the fatal injuries are slightly down and severe injuries exhibiting little change across 

aggregation periods.   

For additional review of these traffic injury data Table 11.2 is presented below along with 

information about the activity period in which the aggregation periods will be used for crash rate 

estimation in Chapter Five.  Since 2018 is the latest available data but bicycle and pedestrian 

activity were estimated using counts data from 2019, there is imperfect alignment in these data.  

However, since bicycle and pedestrian injury counts are relatively consistent from year to year 

and five year averages are being used in the rate calculation, this approach should accurately 

represent the injury conditions during the activity estimation periods.   
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Table 11.2: Average Annual Injuries by Mode, Year, and Aggregation Period 

These average annual injuries counts are further disaggregated by functional classification and 

featured below in Figure 11.3.  Because of the low fatal injury counts for bicycle and pedestrian 

injuries, further disaggregation by functional classification reveals some facilities have zero 

average annual injuries for these modes.   Annual average bicycle and pedestrian severe injuries 

are generally higher on minor and major arterials with similar trends for all injuries where the 

annual average injury count is four to five times higher than local and collector streets.  There is 

a similarly low number of fatal motorized injuries which makes the disaggregation by functional 

classification produce low numbers though major arterials have consistently higher average 

annual fatal injuries.  Severe injuries for motorized users also are higher for major and minor 

arterials with similar results shown for all injuries.   

Higher injury counts for motorized users would be expected on arterials considering these 

facilities move more vehicle and higher speeds.  It’s also not surprising that these facility types 

Mode Injury Severity Average 

Injury Count 

Standard 

Deviation 

Crash 

Years 

Associated Activity 

Estimation Period 

All Modes Fatal Injury (K) 3.2 1.8 2013-

2017 

NA 

Severe Injury (A) 22.4 5.9 

All Injury (KABC) 603.4 158.4 

Motorized Fatal Injury (K) 2 0.7 2017 

Severe Injury (A) 18.6 5.4 

All Injury (KABC) 572.8 156.2 

Bicycle Fatal Injury (K) 0.2 0.4 2017+2018 

Severe Injury (A) 1.6 0.5 

All Injury (KABC) 20.4 3.8 

Pedestrian Fatal Injury (K) 1 1.2 

Severe Injury (A) 2.2 1.1 

All Injury (KABC) 10.2 2.2 

All Modes Fatal Injury (K) 4.2 1.6 2014-

2018 

NA 

Severe Injury (A) 22.8 5.8 

All Injury (KABC) 670.8 105.7 

Motorized Fatal Injury (K) 2.8 1.3 2018 

Severe Injury (A) 19.6 5.0 

All Injury (KABC) 639.2 103.9 

Bicycle Fatal Injury (K) 0.2 0.4 2017+2019 

Severe Injury (A) 1.4 0.5 

All Injury (KABC) 20.2 3.9 

Pedestrian Fatal Injury (K) 1.2 1.1 

Severe Injury (A) 1.8 1.1 

All Injury (KABC) 11.4 2.9 
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are locations with higher nonmotorized injury counts considering the literature review has 

documented these facility types typically presenting higher risk for nonmotorized users.   

 

Figure 11.3: Average annual injuries by mode, aggregation period and functional 

classification 

This section summarized the traffic injuries in the study area comparing two aggregation periods 

with a reference period in order to show stability in injuries across periods.  Showing stability is 

important to prevent any perception of cherry picking injury data that is not representative of 

longer term conditions.  Based on this review the motorized crash injuries in the 2013+2017 and 

2014+2018 periods are higher than the reference period while the nonmotorized crash injuries 

are slightly down.  
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12.0 AGGREGATE CRASH RATE ANALYSIS 

This section computes and reports injury rates for bicycle, pedestrian and motorized transport in 

the study area.  These rates will be calculated using the bicycle and pedestrian activity estimates 

from the earlier modeling section using the equation below: 

𝑰𝒏𝒋𝒖𝒓𝒚 𝑹𝒂𝒕𝒆𝒔𝒆𝒗𝒆𝒓𝒊𝒕𝒚 =   
𝑰𝒏𝒋𝒖𝒓𝒚 𝑪𝒐𝒖𝒏𝒕 𝒔𝒆𝒗𝒆𝒓𝒊𝒕𝒚

𝑴𝒊𝒍𝒆𝒔 𝒐𝒇 𝑻𝒓𝒂𝒗𝒆𝒍𝒎𝒐𝒅𝒆
 

(12-1) 

Where: 

𝐼𝑛𝑗𝑢𝑟𝑦 𝑅𝑎𝑡𝑒𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 =  Annual average injury rate for severity category K, A, B, and C 

𝐼𝑛𝑗𝑢𝑟𝑦 𝐶𝑜𝑢𝑛𝑡𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 =  Annual average injury count for severity category K, A, B, 

and/or C 

𝑀𝑖𝑙𝑒𝑠 𝑜𝑓 𝑇𝑟𝑎𝑣𝑒𝑙𝑚𝑜𝑑𝑒 =  Annual miles of travel for each mode including motorized, 

bicycle, and pedestrian 

These rates are expressed in injuries per 100 million miles of travel, a common standard when 

reporting (NHTSA 2018).   

12.1 REGIONAL TRAFFIC INJURY RATES 

This section will summarize the traffic injuries for each mode of travel where crash data and 

estimates of travel activity are available including motorized, bicycle and pedestrian traffic. 

Motorized traffic estimates are derived from the Highway Monitoring Performance System 

(HPMS) while the bicycle and pedestrian traffic are derived from two modeling approaches 

including a machine learning algorithm and a regression approach.  In addition to the two 

modeling approaches, the bicycle and pedestrian travel activity estimates also have a scenario in 

which zero counts data were injected into the observed data at sites in low density, low 

connectivity areas of the study region in an attempt to moderate the overall modeling estimates.  

This was done because it is likely that many places in these parts of the network do not have 

bicycle or pedestrian traffic but because the structure of the counts program nonmotorized traffic 

are not collected in these areas and so no zero traffic observations are actually collected.  Rates 

are calculated using estimates from each approach and scenario to see how rates vary and 

measure certainty in the injury disparity between modes.   

Figure 12.1 below summarizes the injury crash rates for each injury severity, for each mode, 

modeling approach and zero counts inclusion scenario for just the 2017+2018 estimation period.  

The two modeling approaches produce estimates of nonmotorized travel that differ enough to 

impact the injury crash rates but do not typically change the outcome that nonmotorized injury 
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rates are significantly higher than motorized injury rates.  Only in the pedestrian All Injury rate 

does the rate switch from being higher than the motorized crash rate to lower.  In all other results 

nonmotorized injury rates are higher than motorized injury rates.  The scenarios defined as No 

Zero Counts are lower than results for scenarios defined as Simulated Zero Counts because the 

former scenario has higher overall estimates of nonmotorized travel activity.  These would likely 

represent an over estimate of bicycle and pedestrian activity and so with a larger denominator the 

crash rates decrease relative to other scenarios.  The rates from these scenarios should be 

considered conservative and the true rate is probably somewhere in the middle between the two 

scenarios.  However, for the purposes of the remaining results the No Zero Counts scenario will 

be used since the objective of this chapter is to demonstrate the disparity in injury risk between 

travel modes so using the most conservative estimate of nonmotorized traffic hopefully reduces 

uncertainty in the final conclusions regarding disparity in crash risk between modes.   

 

Figure 12.1: Regional crash injury rate by mode and scenario (2017+2018 estimation 

period)  

The chart in Figure 12.2 shows the No Zero Count scenario still showing crash rates calculated 

using both modeling approaches XgBoost and Regression) for estimating bicycle and pedestrian 

travel activity but includes both the 2017+2018 and 2018+2019 estimation periods to give a 

sense of the stability in the rates from period to period.  Because estimates of nonmotorized 

travel decrease from the 2017+2018 period to the 2018+2019 period for most of the modeling 

approaches the rates are generally higher in the latter period.  Rates for both periods are 

generally many times higher for the nonmotorized users compared to the motorized users.  For 

instance, in the 2017+2018 period the bicycle fatal injury rate is about 9 times higher (0.4 for 

MV compared to 3.8 for bicycle) than the motorized injury rate while the pedestrian fatal injury 

rate is 12 times higher (0.45 for MV compared to 5.5 for pedestrian).  For severe injury rates 
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bicycle users face risk 10 times higher (3.1 for MV compared to 30.6 for bicycle) than motorized 

users while the pedestrian severe injury rate is about 4 times greater (3.1 for MV and 12 for 

pedestrian) than motorized crash risk.  The total injury rate for bicycle users is about 4 times 

higher (101.9 for MV compared to 390.3 for bicycle) while the pedestrian total injury risk is 

lower than the motorized total injury rate by about 38 percent (89.5 for MV compared to 55.6 for 

pedestrian.  The described crash rates between nonmotorized users and motorized users are the 

most conservatively derived rates and should be considered a floor for rate comparison but rates 

may actually be higher for nonmotorized users and thus, disparities greater. 

 

Figure 12.2: Regional crash injury rate by mode and year 

Since the rates using the machine learning (XgBoost) modeling approach are generally lower 

than the rates using activity estimates from the regression approach these results will be used 

below to highlight the nonmotorized risk by functional classification.  Comparisons will be made 

for each functional classification and injury severity for each mode.  In Figure 12.3, fatal and 

severe injuries have been combined to simplify the number of panels shown and to reduce 

problems of small injury counts when disaggregated by functional classification.   
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Figure 12.3: Crash injury rate by mode and functional classification  

The above figure shows that risk increases for all users when vehicle traffic and speed increase 

with higher functional classification, i.e. local streets have lower injury rates compared to 

collectors streets, which in turn are lower than the two arterial classifications.  Injury rates are 

relatively stable from one estimation period to another, especially for motorized injury rates 

where no change is detected on some functional classifications.  Significant disparities between 

nonmotorized and motorized injury rates exist for almost all functional classifications with the 

worst disparities existing on arterials for bicycle users.  Disparities on these facilities for fatal 

and severe injuries are 35 to 99 times higher for bicycle users compared to motorized users.  For 

pedestrians the fatal and severe injury rate disparity is 17 to 75 times higher compared to 

motorized users.  On some functional classifications the nonmotorized injury rates are lower 

including on local streets for both bicycle and pedestrian users and on collectors for just 

pedestrian users.   

The last chart featured in Figure 12.4 shows similar information to Figure 12.3 but now only 

shows the nonmotorized crash injury rates in order to highlight the disparate risk across 

functional classification.  Local and collector streets has much lower risk than arterial roads.  In 

the case of all injury (KABC) rates for bicycle users, major arterials present about five times 

greater risk compared to collector streets at least 68 times greater risk compared to local streets.  

For pedestrian users, the total injury rates are also at least five times higher on major arterials 

compared to collectors and at least 42 times higher compared to local streets.  If injury rates from 

less conservative estimates of nonmotorized travel activity were used these disparities would be 

even larger.   
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Figure 12.4: Nonmotorized traffic injury rate by mode and scenario  

12.1.1 Regional Traffic Injury Rates Discussion 

This section summarized crash injury rates for motorized and nonmotorized users using available 

miles of travel data from official HPMS sources and a novel approach to estimating 

nonmotorized activity.  The results confirm past research that has demonstrated disparities in 

crash injury risk between user types, with bicycles facing significantly more risk for all injury 

severities compared to motorized users.  Pedestrian crash injury risk is higher for fatal and severe 

injuries but about the same when compared to total crash injury rates for motorized users.  Crash 

risk is relatively stable across estimation periods.  Nonmotorized crash injury rates are not 

homogenous across the system and increase as the functional classification changes from streets 

with lower vehicle volumes and lower travel speeds.  The next section will perform statistical 

modeling using the network wide estimates of nonmotorized traffic activity to determine what 

other factors are associated with increased crash injury risk for nonmotorized users.   
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13.0 CRASH MODELING 

This section will use the available estimates of nonmotorized activity at the network level to 

perform relatively simple crash injury modeling to further understand factors associated with 

injuries and injury risk.  Statistical crash models are recommended when data is available at the 

link level which the activity modeling performed in the above chapters provides for these 

purposes.  Even though this research has measures of activity across the network and a fully 

attributed network for certain data elements, the number of observed injuries is so low that model 

stability is an issue, especially for the pedestrian crash models.  Because of this only one segment 

model for both bicycle and pedestrian injury is presented, representing the best attempt to apply 

statistical methods to modeling the crash injuries.  Guidance is issued in the discussion section 

about how to improve the functionality and confidence in these models.   

13.1 BICYCLE CRASH MODELING  

Crash data for the bicycle crash modeling includes all crash injuries recorded between 2014 and 

2018 which occurred on the on-street network where estimates of bicycle activity are available 

within the Bend MPO study area.  The nonmotorized activity represents average values for both 

estimation periods as since the crash data represents multiple years it was thought that a general 

representation of the bicycle activity across years was sensible.  In Table 13.1 below the bicycle 

injury counts are summarized by functional classification and presence of bicycle lane.  

Table 13.1: Bicycle Injuries by Functional Classification 2014-2018 

Figure 13.1 below shows the spatial distribution of the bicycle injuries.  From the map of injury 

locations it’s observable that many injuries occur on or near arterials that transect the study area 

showing spatially what the table shows in tabular format.  

Functional Classification Bicycle Injury Count 
 

Bike Lane  No Bike Lane Total  

Local 1 28 29 

Collector 6 8 14 

Minor Arterial 26 4 30 

Major Arterial 27 0 27 

Total 60 40 100 
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Figure 13.1: Bicycle injury locations for years 2014 to 2018 

These data are combined into a statistical model to better understand the role that functional 

classification and presence of bicycle lane play in predicting bicycle crash injury while 

controlling for the effect of differences in bicycle traffic.  These statistical models are commonly 

referred to as Safety Performance Functions (SPFs) and typically use a negative binomial 

regression model specification because the crash data distribution feature over dispersion, a 

condition when the variance exceeds the mean (HSM 2010).  However, for the bicycle crash 

model data over dispersion is not detected, likely because the entire network is being used and 

the vast majority of link segments have not experienced a bicycle injury crash within the analysis 

timeframe resulting in excessive number of zeros.  This condition requires the use of a hurdle 

regression model or zero-inflated regression model which combines a truncated Poisson model 

with a logit model.  The Poisson element of the hurdle model estimates the non-zero values 
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while the logit model estimates the zero values.  The probability distribution can be described as 

follows: 

𝑷𝒓(𝒚𝒊 = 𝒋) =  {
𝝅𝒊+(𝟏−𝝅𝒊) 𝐞𝐱𝐩(−𝝁𝒊)

(𝟏−𝝅𝒊)
𝝁

𝒊
𝒚𝒊𝐞𝐱𝐩 (−𝝁𝒊)

𝒚𝒊!

  
𝐢𝐟  𝒋 = 𝟎

𝐢𝐟  𝒋 > 𝟎
 

(12-2) 

Where: 

yi is the number of injuries 

πi is the logistic link function for predicting the links with zero injuries 

A few model specifications in the zero inflated regression model using covariates such as posted 

speed, estimated vehicle volume, presence of bicycle facility, and functional classification to 

predict bicycle injuries.  Other treatment measures would be ideal but the kinds of treatments 

currently installed in the study area is limited and other treatments are not currently tracked in 

the available network data.   

The table below summarizes a zero inflated regression model where the non-zero bicycle injury 

segments are a function of bicycle AADT, roadway length, and the presence of a bicycle lane 

while the zero bicycle injury segments are a function of functional classification.  These results 

show that as bicycle AADT increases bicycle injury counts, as would be expected.  Length and 

lack of bike lane is also positively correlated with bike injuries though the presence of bike lane 

variable is not significant at the 0.10 level. 

Table 13.2: Bicycle Injury Model – Zero-Inflated Regression 

Parameter Regression Based Bike 

AADT Estimates 

XgBoost Based Bike Based 

AADT Estimates 

Estimate Standard 

Error 

P-

value 

Estimate Standard 

Error 

P-value 

(Intercept) -4.7455103 0.709924 0.00 -5.16503 0.7377129 0.00 

log(Bike AADT ) 0.7861149 0.1610009 0.00 0.89128 0.1675135 0.00 

Roadway Length (ft.) 0.0008817 0.0002889 0.00 0.000756 0.0002986 0.01 

No Bicycle Facility 

(Reference Bike Lane) 

0.366269 0.3431637 0.29 0.090931 0.3371497 0.79 

Zero-inflation model coefficients (binomial with logit link):  
Estimate Standard 

Error 

P-

value 

Estimate Standard 

Error 

P-value 

(Intercept) 3.9774 0.4013 0.00 3.7072 0.3957 < 2e-16 

Collector Street (Refernce 

Local) 

-1.4515 0.4191 0.00 -1.0656 0.4224 0.01 

Arterial Street -2.2725 0.4193 0.00 -2.0065 0.4033 0.00 
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Parameter result tables can often be better interpreted when applied through a sensitivity test 

holding some covariates constant while altering others to see how the model responds with new 

data.  Figure 13.2 below shows the results of applying the model in a sensitivity test holding 

segment length constant but varying bicycle AADT and functional classification.  Also, instead 

of showing predicted crash count the chart below shows the crash rate or risk to show how the 

bicycle injury risk decreases across the varying covariates.  For instance the sensitivity test 

below shows bicycle injury crash risk is mitigated by the presence of a bicycle lane by 23%, or 

that the presence of a bicycle lane reduces crash risk by 22 percent, all else being equal.  

Functional classification, a proxy measure for vehicle speed and volume, increase bicycle crash 

injury risk as functional classification increases.  For instance, local streets present 90% less 

injury risk compared to arterials, with collectors decreasing risk by 69 percent.  These findings 

align with the injury rates presented in the above chapter.  Additionally, this model and the 

accompanying sensitive test demonstrates that the safety in numbers effect is at work in the study 

region.  Crash risk decreases as the number of daily bicycle riders on a given corridor increases.  

For instance, as the daily average (AADT) bicycle traffic increases from a 25 AADT to 100 

AADT, the crash risk decreases by 21 percent.  Increasing bicycle AADT from 10 AADT to the 

maximum observed bicycle AADT of 390 bicycle injury crash risk decreases by 38 percent.   

 

Figure 13.2: Bicycle injury crash model sensitivity test for segments 

13.1.1 Bicycle Crash Modeling Discussion 

The above section estimates a bicycle injury crash model using segment level analysis in the 

Bend study area.  Though the bicycle crash injury data is sparse, the model affirms the aggregate 

crash risk results presented in an earlier chapter, showing that crash risk for bicycle users is 

higher on arterial streets compared to collector streets.  The model tested the effect of the 
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presence of a bike lane, showing that the presence of bike lanes decreased bicycle injury risk, 

though the variable in the zero inflated regression model was not statistically significant.   

13.2 PEDESTRIAN CRASH MODELING  

Crash data for the pedestrian injury modeling includes all crash injuries recorded between 2014 

and 2018 which occurred on the on-street network where estimates of bicycle activity are 

available within the Bend MPO study area.  The nonmotorized activity represents average values 

for both estimation periods since the crash data represents multiple years it was though that a 

general representation of the pedestrian activity across years was sensible.  In Table 13.3 below 

the pedestrian injury counts are summarized by functional. Information 

Table 13.3: Pedestrian Injuries by Functional Classification 2014-2018 

Functional Classification Pedestrian Injury Count 

Collector 7 

Local 7 

Major Arterial 22 

Minor Arterial 21 

Total 57 

 

Figure 13.1 below shows the spatial distribution of the pedestrian injuries.  From the map of 

injury locations it’s observable that many injuries occur on or near arterials that transect the 

study area showing spatially what the table shows in tabular format.   As presented in the table, a 

majority of pedestrian injuries occur on arterials.  These facilities typically have higher vehicle 

speeds and volume.  
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Figure 13.3: Bicycle injury locations for years 2014 to 2018 

Because the distribution of the pedestrian injuries follows a different negative binomial form an 

alternative model specification was used to estimate the pedestrian injury model.  The results of 

the negative binomial regression model for estimating pedestrian injuries in below in Table 13.4.  

The results show that there is a significant positive relationship between pedestrian injuries and 

pedestrian traffic volumes, as would be expected.  The other covariate in the model includes 

vehicle volume, which is also correlated with an increase in pedestrian injuries.  Both of these 
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variables are significant at the 0.05 level.  Other variables such as segment distance were tried 

but models were unstable.  The low number of pedestrian injury counts makes estimating 

pedestrian injury models using only a single urban area difficult.   

Table 13.4: Pedestrian Injury Model – Zero-Inflated Regression 

Parameter result tables can often be better interpreted when applied through a sensitivity test 

holding some covariates constant while altering others to see how the model responds with new 

data.  Figure 13.4Figure 13.2 below shows the results of applying the model in a sensitivity test 

holding segment length constant but varying pedestrian AADT and functional classification.  

Also, instead of showing predicted crash count the chart below shows the crash rate or risk to 

show how the pedestrian injury risk decreases across the varying covariates.  For instance the 

sensitivity test below shows pedestrian injury crash decreases as pedestrian volume increases.   

 

Figure 13.4: Pedestrian injury crash model sensitivity test for segments 

More specifically, if pedestrian volume increases from 25 to 100 pedestrians per day the risk 

decreases by nearly 9% while going from 25 to the maximum observed 800 pedestrian AADT 

the injury risk drops by 35 percent, all else being equal.  The figure shows how increased vehicle 

Parameter Regression Based Pedestrian 

AADT Estimates 

XgBoost Based Pedestrian 

Based AADT Estimates 

Estimate Standard 

Error 

P-value Estimate Standard 

Error 

P-value 

(Intercept) -9.41777 0.65253 < 2e-16 -8.53464 0.51308 < 2e-16 

log(Ped_AADT_Rg) 0.97517 0.17693 0.00 0.89242 0.14380 0.00 

Estimated Vehicle 

AADT 

0.000092 0.00003 0.00 0.000102 0.00002 0.00 
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volumes increase pedestrian crash risk.  When the vehicle volume increases from 1000 AADT to 

20,000 AADT the pedestrian crash risk increases by 83 percent, all else being equal.   

13.2.1 Pedestrian Crash Modeling Discussion 

The above section constructs a simplistic pedestrian crash injury model using estimates of 

pedestrian volume from an earlier chapter and available pedestrian crash injury data, which is 

quite sparse.  Using a small set of covariates, the model highlighting the role that vehicle volume 

and pedestrian volume play in predicting crash risk demonstrating that vehicle volume increases 

pedestrian crash injury risk and increasing pedestrian traffic decreases pedestrian crash risk.  

Important covariates like pedestrian safety treatments were not tested because the network data 

used in this analysis was not attributed with those features.  Future work should develop those 

data so that the impacts on crash risk can be captured in the models.  However, because of small 

sample size, it’s likely that the current study area would need to be combined with data from 

other regions in order to make the models more reliable.   

13.3 CRASH MODELING DISCUSSION 

The chapter above on crash modeling demonstrates that simplistic crash injury models for 

nonmotorized users can be developed and generate useful insights on local conditions.  Though 

many of the risk factors used in the model like vehicle volume have been documented elsewhere, 

confirming the existence of and magnitude of the effect is important to help align local decision 

makers understanding of the role vehicle traffic play in nonmotorized injury outcomes.   

13.4 DISCUSSION  

Using estimates of bicycle and pedestrian activity form direct demand models is becoming a 

more common approach to quantifying traffic volumes for nonmotorized users across the system.  

At the aggregate level such as functional classification these estimates of activity likely reduce 

error compared to the link level estimates.  With more traffic count data and some additional 

tuning of the direct demand models these estimates could be further refined but currently provide 

useful information in crash risk analysis.   

The results presented in this research demonstrate what past research has shown, the major crash 

injury risk disparities exist currently on the system in the study area.  The risk is not homogenous 

across the system and streets with higher vehicle traffic volumes and speed significantly increase 

crash risk for nonmotorized users.  Risk appears to be further mitigated by design, with the 

bicycle crash model demonstrating risk reduction on facilities with bicycle lanes.  Further, just 

having the presence of more nonmotorized users can reduce risk, likely utilizing the safety in 

number effect.  Though limited in scope, this research show that for states and cities interested in 

getting more people to use the nonmotorized to bike and walk, interventions exist that will make 

people feel safer and deliver objective reduction in risk.   

This research was not able to examine other treatment types but research summarized in DiGioia 

et al. (2017) found many common treatments exist that reduce risk for users.   
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Figure 13.5: Summary of risk ratios for bicycle infrastructure treatments from DiGioia et 

al. (2017) 

For pedestrian crash injury many treatments have been documented to reduce crash frequency 

and overall risk.  The National Cooperative Highway Research Program released a guide to 

performing systemic pedestrian crash analysis and compiled treatment options and associated 

crash reduction factors ((NCHRP 2018).  Treatments can range from low cost and easy to install 

to relatively more complicated interventions but these treatments have been demonstrated to 

reduce pedestrian injury crash outcomes including risk.   

Taken together it should not be concluded that nonmotorized injury outcomes are inevitable and 

somehow poor behavior alone is responsible for these injury outcomes.  Injuries for 

nonmotorists, like all crash injuries, are preventable and urban areas that lack facilities with 

evidence based treatment options will likely struggle to attract more users due to the existence of 

high risk conditions.  The Oregon Department of Transportation formerly recognizes the risk 

many of the system elements analyzed in this research present to nonmotorized users.  Bergh et 

al. (2015) reviewed the process developed for the agency using Oregon data to establish risk 

factors for people that walk and bicycle concluding that in addition to vehicle volumes and 

posted speed limit, the presence of traffic signals, number of lanes, lack of a bicycle facility and 

driveway density also increased risk for these users.  The authors also note that presence of mid-

block pedestrian crossing and transit stops increased crash risk for pedestrians highlighting the 

need for nonmotorized exposure data since it’s likely the safety issue with these factors is 

actually the presence of more nonmotorized users, not the features themselves.   



 

152 

 

In addition to nonmotorized crash injuries being avoidable through design, active transportation 

benefits to population health outweigh the costs associated with injuries and air pollution.  These 

benefits have been well documented In Mueller et al. (2015) where 30 studies looking at the 

health impact of shifting driving trips to walking and bicycle trips finding that in 27 of those 

studies the benefits of increased physical activity outweighed the increased risks of traffic safety 

and air pollution exposure.  In a another study of over 250,000 people in the United Kingdom, 

researchers followed participants for up to five years and found that people who bicycled or 

bicycled and walked to work had lower risks of cardiovascular disease and cancer (Celis-

Morales et al. 2017).   Under current conditions, these health benefits however, will never be 

fully realized when potential nonmotorized road users experience the elevated crash risk 

documented in this and other studies.  System managers at the state and local level have a 

significant role to play to build a complete system that allow users the freedom of movement by 

for the mode they choose.  This freedom is currently limited by the outsized risk nonmotorized 

users’ face on Bend’s roadways.   
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Table A.1: Deployment Information 

Field Name  Data 

Format 

Description 

Location_Id numeric Unique Identifier for count locations locations (parent 'site') 

Sub_Location_Id numeric Unique identifer describing the sub location of the count 

Deployment_Date character Deployment date of device 

Deployment_Tim

e 

time hms Deployment time of device 

Equipment_Id character Serial number for hardware device 

Collection_Type character Data collection type (e.g. Roadway, sidewalk, Combo, etc.) 

Photo_Url character A URL link for photo(s) of the deployment 

Device_Name character Serial Number of device. Used to link with automatically 

transmitted data) 

Pickup_Date character Date when device was picked up 

Pickup_Time time hms Time when device was picked up 

Comments character   

Email character   

Edit_Url character   

Time Stamp character Time stamp of when the record was created 

Description character Description of device deployment 

 

Latest version of the code links directly to Google Sheets bi-passing the need to export the file 

and store it on a network. 

See Diagram for Data Collection graphic 
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Table A.2: Count Location Information 

Field Name  Data 

Format 

Description 

Location_Id integer Unique Identifier for count locations locations (parent 

'site') 

Sub_Location_Id character Unique identifier for sites at location, e.g. sidewalk, 

bike lane, roadway. See Diagram tab 

Vendor_Site_Id character Identifier assigned by device vendor.  Used to link 

spatial data location to counts data.  Only used for 

permanent locations. 

Collection_Type character Data collection method, mobile vs. permanent (see 

Collection_Type_Code) 

Collection_Type_Desc character Data collection method, mobile vs. permanent (see 

Collection_Type_Code) 

Facility_Type numeric Value indicating the facility in which data collection 

occurred (See Facility_Type_Code) 

Facility_Type_Desc character Descriptive indicating the facility in which data 

collection occurred (See Facility_Type_Code) 

Double_Count_Location numeric Value indicating if two devices required to collect at 

site.  For mobile collection only 

Is_Oneway numeric Value indicating if site is a one-way travel direction 

Oneway_Direction character Direction in which oneway travel is directed 

Latitude numeric Latitude of site 

Longitude numeric Longitude of site 

Site_Name character Name of Sub_Location 

Location_Description character Unique name for location  

Visualize numeric Flag for data visualization.  Applies to parent site only 

User_Type character User type collected (See User_Type code tab) 

User_Type_Desc character User type collected (See User_Type code tab) 

Device_Type character Equipment type setup (see Device_Type tab) 

Direction numeric Code to establish travel direction of traffic 

Post_Needed numeric Indication of whether a post is needed to hang 

collection device 

Install_Instructions character Information for vendor regarding how to install 

collection devices 

Vendor_Channel_Id numeric Unique value for permanent sites that link spatial data 

to counts data.  Only Used for permanent locations. 

ImageFilePath character Relative file path for a picture of the count site 

User_Updated character Initials of GIS user updating the record last 

Street Furniture character Description of street furniture, temporary post, or tree 

used to anchor the hardware 
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Table A.3: Processed Count Data 

Field Name  Data 

Format 

Description 

Location_Id character Unique Identifier for count locations (parent 'site') 

Sub_Location_Id character Unique identifier for sites at location, e.g. sidewalk, bike 

lane, roadway. See Diagram tab 

Date date Date when count was recorded 

Direction character Direction of travel for counts 

User_Type_Desc character User type collected (See User_Type code tab) 

Facility_Type numeric Code indicating the facility in which data collection 

occurred (See Facility_Type_Code) 

Counts numeric Traffic count 

Obs_Hours numeric Number of hours of collected data 

Weekday character Day of Week  

Is_Weekday character Descriptive of weekday vs. weekend 

Month character Month of Year 

Year numeric Calendar Year 

Device_Type_Desc character Description of device type collecting data.  Only available 

and Sub_Location_Id level since Location_Id and Link_Id 

level aggregates Sub_Location data of whiohc multiple 

devices types may have been used 

Is_Holiday character TRUE or FALSE value depending on whether date falls on 

the following federal US holidays(New Years Day, 

Inauguration Day,ML Kings Birthday,Memorial 

Day,Independence Day,Labor Day 

Veterans Day,Thanksgiving Day,ChristmasDay) 

Potential_Special_Event logical  TRUE or FALSE value based on grouping analysis of all 

counts sites where clusters of higher than expected counts 

by day are used to inform potnetial days where special 

events took place that may increase the traffic volumes 

Error_Code numeric Value assigned to daily counts that indicates any error in 

that record.  See Error_Codes tab for full description.  

Ub_Conf_Bound numeric Upper level threshold value assigned to record to perform 

error flagging and understand if daily observation is within 

an acceptable range 

Lb_Conf_Bound numeric Lower level threshold value assigned to record to perform 

error flagging and understand if daily observation is within 

an acceptable range 

Est_Split logical  TRUE or FALSE value based on whether the count was 

estimated from user only counts using an assumed split 

factor 

Index numeric Index value is used to keep track of records in the error 

flagging process and do not persist across data process 
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Table B.1: Hyper parater Summary 

Mode Algorithm 

Specification 

Algorithm Year Split 

Variable 

Count 

Boosting 

Rounds 

Maximum 

Depth  

Learning 

Rate 

Gamma Subsample 

Ratio of 

Columns 

Minimum 

Child 

Weight 

Subsample 

Ratio 

Vehicle Federal Fc Random Forest 2017 6 NA NA NA NA NA NA NA 

Federal Fc Random Forest 2018 6 NA NA NA NA NA NA NA 

Local Fc Random Forest 2017 6 NA NA NA NA NA NA NA 

Local Fc Random Forest 2018 6 NA NA NA NA NA NA NA 

Federal Fc XgBoost 2017 NA 100 8 0.075 0 0.5 2.5 1 

Federal Fc XgBoost 2018 NA 75 6 0.075 0 0.5 2 1 

Local Fc XgBoost 2017 NA 100 8 0.075 0 0.5 2 1 

Local Fc XgBoost 2018 NA 75 6 0.1 0 0.5 2 1 

Bicycle Spec Algorithm 2017+2018 2 NA NA NA NA NA NA NA 

All + Strava RandomForest 2018+2019 2 NA NA NA NA NA NA NA 

All + Strava RandomForest 2017+2018 2 NA NA NA NA NA NA NA 

All RandomForest 2018+2019 2 NA NA NA NA NA NA NA 

All RandomForest 2017+2018 NA 50 7 0.05 0 0.3 2.25 1 

All + Strava XgbTree 2018+2019 NA 50 8 0.05 0 0.4 2 1 

All + Strava XgbTree 2017+2018 NA 50 7 0.05 0 0.3 2.5 1 

All XgbTree 2018+2019 NA 50 6 0.05 0 0.3 2 1 

Pedestrian All + Strava RandomForest 2017+2018 2 NA NA NA NA NA NA NA 

All + Strava RandomForest 2018+2019 2 NA NA NA NA NA NA NA 

All RandomForest 2017+2018 2 NA NA NA NA NA NA NA 

All RandomForest 2018+2019 2 NA NA NA NA NA NA NA 

All + Strava XgbTree 2017+2018 NA 50 6 0.05 0 0.5 2 1 

All + Strava XgbTree 2018+2019 NA 50 7 0.075 0 0.4 2 1 

All XgbTree 2017+2018 NA 50 7 0.05 0 0.3 2 1 

All XgbTree 2018+2019 NA 50 8 0.05 0 0.3 2 1 

 


